Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
Đây là giải bất phương trình nhé bạn
a) Ta có: \(3\left(1-2x\right)< 4\left(5-\frac{3x}{2}\right)\)
\(\Leftrightarrow3-6x< 20-6x\)
\(\Leftrightarrow3-6x-20+6x< 0\)
hay -17<0(vô lý)
Vậy: \(S=\varnothing\)
b) Ta có: \(4-\left(x-3\right)^2-\left(2x-1\right)^2>12x\)
\(\Leftrightarrow4-\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x>0\)
\(\Leftrightarrow4-x^2+6x-9-4x^2+4x-1-12x>0\)
\(\Leftrightarrow-5x^2-2x-6>0\)
\(\Leftrightarrow-5\left(x^2+\frac{2}{5}x+\frac{6}{5}\right)>0\)
\(\Leftrightarrow x^2+\frac{2}{5}x+\frac{6}{5}< 0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{10}+\frac{4}{100}+\frac{29}{25}< 0\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2+\frac{29}{25}< 0\)(vô lý)
Vậy: \(S=\varnothing\)
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
a/ (2x2 + 3x - 1)2 - 4(2x2 + 3x + 3) + 20 = 0
Đặt a = 2x2 + 3x - 1 , ta đc:
a2 - 4.(a + 4) + 20 = 0
=> a2 - 4a - 16 + 20 = 0
=> a2 - 4a + 4 = 0
=> (a - 2)2 = 0 => a = 2
Với a = 2 => 2x2 + 3x - 1 = 2 => 2x2 + 3x - 3 = 0
Có : \(\Delta=3^2-4.2.\left(-3\right)=33\Rightarrow\sqrt{\Delta}=\sqrt{33}\)
\(\Rightarrow x_1=\frac{-3+\sqrt{33}}{4};x_2=\frac{-3-\sqrt{33}}{4}\)
Vậy pt có 2 nghiệm như trên
â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)
\(5-x=2-3x\)
\(2x=-3\)
\(x=\frac{-3}{2}\)
Vậy ......
b) \(25-x^2=4x\left(5+x\right)\)
\(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\)
\(5-x=4x\)
\(5x=5\)
x=1
Vậy......
a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)
<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)
<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)
<=> \(\left(2+3x\right)\left(2x+3\right)=0\)
<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)
b) \(25-x^2=4x\left(5+x\right)\)
<=> \(25-x^2-4x\left(5+x\right)=0\)
<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)
<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)
<=> \(\left(5+x\right)\left(5-5x\right)=0\)
<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
a: \(\Leftrightarrow\left(3x+2\right)\left(5-x\right)=-9x^2+4\)
\(\Leftrightarrow\left(3x+2\right)\left(5-x\right)+\left(3x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(2x+3\right)=0\)
=>x=-2/3 hoặc x=-3/2
b: \(\Leftrightarrow4x\left(x+5\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-5\right)=0\)
=>x=-5 hoặc x=1
c: \(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
=>x=1 hoặc x=-1/2
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)ĐKXĐ : \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2-11x+9x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\)( t/m )
Vậy....