Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a,ta có:
\(\left(y+1\right)^4=y^4+4y^3+6y^2+4y+1\ge y^4+y^3+y^2+y\ge y^4\)
=>y=0=>x=0;-1
b,
b,\(\left(x^2+1\right)^3=x^6+3x^4+3x^2+1\ge x^6+3x^2+1>\left(x^2\right)^3\)
=>x=0=>y=-1;1
pt <=> \(4x^2+4x+24=4y^2\)
<=> \(\left(2x+1\right)^2-4y^2=-23\)
<=> \(\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
TH1: \(\hept{\begin{cases}2x+1-2y=-23\\2x+1+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=6\end{cases}}\)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\\2x+1+2y=23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=6\end{cases}}\)
TH3: \(\hept{\begin{cases}2x+1-2y=1\\2x+1+2y=-23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-6\end{cases}}\)
TH1: \(\hept{\begin{cases}2x+1-2y=23\\2x+1+2y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=-6\end{cases}}\)
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học
Ta có:
\(x^3-y^3-y^2-3y-1=0\)
\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)
Dễ dàng thấy:
\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)
\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)
Làm tiếp nhé
\(4x^2=4y^6-4y^3\)
\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)