Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
2x2 + y2 + 3xy + 3x + 2y + 2 = 0
<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0
<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0
<=> (3x + 2y + 2)2 - x2 = -4
<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4
<=> (2x + 2y + 2)(4x + 2y + 2) = -4
<=> (x + y + 1)(2x + y + 1) = -1
Xét các TH xảy ra <=>
\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)
\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)
(tự tính)
Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ
Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)
Ta luôn có \(x+k>x-k\) với \(k>0\)
Xét các trường hợp với \(x-k\)và \(x+k\)là các số nguyên được
\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)
Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)
Học tốt
Pt <=> \(x^2-2xy-xy+2y^2=-6\)
<=> x( x - 2y) - y ( x - 2y) = -6
<=> ( x - 2y) ( x - y) = - 6 = -3 .2 = -2. 3= -6.1 = -1.6
Vì x; y là số tự nhiên => 2y > y => x - 2y<0 < x - y
=> Có các TH sau:
Th1: x - 2y = - 3 và x - y = 2 <=> y = 5 và x = 7
Th2: x - 2y =- 2 và x - y = 3 <=> x = 8; y = 5
Th3:...
Th4:...
\(x^2+2y^2+3xy+8=9x+10y\)
\(\Leftrightarrow4x^2+8y^2+12xy+32-36x-40y=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+\left(8y^2-40y+32\right)=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+9\left(y-3\right)^2-\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)\right]^2-\left(y-7\right)^2=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)-\left(y-7\right)\right].\left[2x-3\left(y-3\right)+\left(y-7\right)\right]=0\)
\(\Leftrightarrow\left(2x-4y+16\right)\left(2x-2y+2\right)=0\)
\(\Leftrightarrow\left(x-2y+8\right)\left(x-y+1\right)=0\)
-TH1: \(x-2y+8=0\) \(\Leftrightarrow x=2y-8\) thay vào pt đề cho tìm được x, y.
Tương tự cho TH2