Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
Mấy chế em xin câu 3 ạ :>>
3. Giải pt :
\(x^2-10x+16=0\)
\(\Leftrightarrow x^2-8x-2x+16=0\)
\(\Leftrightarrow\left(x-8\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy gt của x để bt đạt giá trị bằng 0 là \(x\in\left\{2;8\right\}\)
4. \(2x^2+2xy+y^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+2x^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+x^2+x^2+2x+1=0\)
\(\Leftrightarrow\left(y+x\right)^2+\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\Rightarrow y+x=0\Leftrightarrow y-1=0\Rightarrow y=1\)
Vậy giá trị của \(x\) là -1. (Nếu kết luận cả y thì giá trị của \(y\) là 1)
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
\(2xy+x+y=21\Leftrightarrow4xy+2x+2y=42\Leftrightarrow4xy+2x+2y+1=43\Leftrightarrow2x\left(2y+1\right)+\left(2y+1\right)=43\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=43mà:x,y\in Z\Rightarrow2x+1,2y+1le\Rightarrow2x+1\inƯ\left(43\right)\Rightarrow2x+1\in\left\{-1;1;-43;43\right\}\)
\(+,2x+1=1\Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=43\end{matrix}\right.\Rightarrow x=0;y=21\)
\(+,2x+1=43\Rightarrow\left\{{}\begin{matrix}x=21\\2y+1=1\end{matrix}\right.\Rightarrow x=21;y=0\)
\(+,2x+1=-1\Rightarrow\left\{{}\begin{matrix}x=-1\\2y+1=-43\end{matrix}\right.\Rightarrow x=-1;y=-22\)
\(+,2x+1=-43\Rightarrow\left\{{}\begin{matrix}x=-22\\2y+1=-1\end{matrix}\right.\Rightarrow x=-22;y=-1\)
\(5x-3y=2xy-11\Leftrightarrow10x-6y=4xy-22\Leftrightarrow4xy-10x+6y-22=0\Leftrightarrow2x\left(2y-5\right)+6y-15=7\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7\Rightarrow2x+3\inƯ\left(7\right)\Leftrightarrow mà:x\in Z^+\Rightarrow2x+3\ge5\Rightarrow2x+3=7;2y-5=1\Leftrightarrow x=2;y=3\left(thoaman\right)\) \(Vậy:x=2;y=3\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.