K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2021

\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)

\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)

\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)

Vậy pt đã cho vô nghiệm

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

27 tháng 8 2020

\(2x^2+7y^2+3x-6y=5xy-7\)

\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)

Thấy ngay \(VT>0\)

=> Pt vô nghiệm 

Sure ?

27 tháng 8 2020

\(2x^2+7y^2+3x-6y=5xy-7\)

<=> \(16x^2+56y^2+24x-48y=40xy-56\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)

Mà \(31y^2-18y+47>0\)với mọi y 

=> (1) vô nghiệm

23 tháng 8 2017

Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học

24 tháng 8 2017

Ta có:

\(x^3-y^3-y^2-3y-1=0\)

\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)

Dễ dàng thấy:

\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)

\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)

Làm tiếp nhé

19 tháng 8 2018

\(5x^4+y^2-4x^2y-85=0\)

\(\Leftrightarrow x^4=4x^2-4x^2y+y^2-85=0\)

\(\Leftrightarrow x^4+\left(2x^2-y\right)^2=85\)

\(\Leftrightarrow x^4\in\left\{3^4;2^4;1^4;0^4\right\}\)

tiếp tục xét lần lượt các trường hợp:

+) nếu \(x^4=0^4\Rightarrow x=0\Rightarrow y^2=85\Rightarrow y\in\varnothing\)

+) nếu \(x^4=1^4\Rightarrow x=\pm1\Rightarrow\left(y-2\right)^2=84\Rightarrow y\in\varnothing\)

+) nếu \(x^4=2^4\Rightarrow x=\pm2\Rightarrow\left(y-8\right)^2=69\Rightarrow x\in\varnothing\)

+) nếu \(x^4=3^4\Rightarrow x=\pm3\Rightarrow\left(y-18\right)^2=2^2\)

\(\Leftrightarrow\orbr{\begin{cases}y-18=2\\y-18=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=20\\y=16\end{cases}}}\)( nhận ) 

P/s nhận cả hai nhé

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

20 tháng 11 2018

bài này mà lớp 9 á

20 tháng 11 2018

\(x^2+2y^2+2xy=y+2.\)

\(\Leftrightarrow x^2+2xy+2y^2-y-2=0\)

\(\Leftrightarrow4x^2+8xy+8y^2-4y-8=0\)

\(\Leftrightarrow4\left(x^2+2xy+y^2\right)+\left(4y^2-4y+1\right)-9=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(2y-1\right)^2-9=0\)

Mới nghĩ đến đây thôi ak