Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
\(HPT\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2=3+\frac{1}{x}+\frac{1}{x^2}\\..\\...\end{cases}}\)
đến đây cộng vế 3 PT ta sẽ tính được \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) khi đó thay vào PT đầu giải
Xét (x,y,z)=(0,0,m),(0,n,0),(p,0,0) là nghiệm của hệ(m,n,p\(\in\)R)
Xét xyz\(\ne\)0
hpt\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2\\\left(\frac{1}{z}+\frac{1}{x}\right)^2\\\left(\frac{1}{x}+\frac{1}{y}\right)^2\end{cases}}\)
Đặt\(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)
hệ tt
\(\hept{\begin{cases}a^2+a+3=\left(b+c\right)^2\\b^2+b+4=\left(c+a^2\right)\\c^2+c+5=\left(a+b\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b+c+\frac{1}{2}\right)\left(b+c-a-\frac{1}{2}\right)=\frac{11}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(c+a-b-\frac{1}{2}\right)=\frac{15}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(a+b-c-\frac{1}{2}\right)=\frac{19}{4}\end{cases}}}\)
đặt rồi tự giải tiếp