K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 11 2021
bạn đã chọn gửi toán lớp 1 thì bạn không được hỏi những câu hỏi ko phải toán lớp 1 nhé
NQ
2
6 tháng 11 2021
đúng rùi , toán lớp 1 nâng cao thành toán cấp 2 ,3
21 tháng 11 2021
đây mà là toán lớp 1 á bọn chị họ lớp 3 mà còn chưa học đây này
3 tháng 10 2018
a) \(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{9}=\frac{3^n}{27^n}\)
\(\frac{1}{9}=\frac{3^n}{3^{3n}}\)
\(\frac{1}{9}=\frac{1}{3^{2n}}\)
=> 32n = 9 = 32
=> 2n = 2
=> n = 1
NB
1
Dễ thấy \(2^x=y^2-153\)có Vế phải luôn nguyên nên \(2^x\in Z\Rightarrow x\in N\)
\(2^x+12^2=y^2-3^2\Leftrightarrow2^x+153=y^2.\)(1)
Nếu x là số lẻ , khi đó \(2^x+153\)chia 3 dư 2 ( Vì 153 chia hết cho 3 ,và \(2^x\)với x là lẻ thì luôn chia 3 dư 2)
\(y^2\)chia cho 3 dư 0 hoặc dư 1 (cái này là theo tính chất chia hết của số chính phương)
Như vậy 2 vế của (1) mâu thuẫn => x không thể là số lẻ. Vậy x là số chẵn.
Đặt \(x=2k\left(k\in N\right)\), ta có:
\(2^{2k}+153=y^2\Leftrightarrow y^2-\left(2^k\right)^2=153\)
\(\Leftrightarrow\left(y-2^k\right)\left(y+2^k\right)=153.\)
Nhận thấy \(y-2^k\le y+2^k\left(dok\in N\right)\)và \(y-2^k;y+2^k\)đều là các số nguyên
Mà 153=9.17=(-17).(-9)=3.51=(-51).(-3)=1.153=(-153).(-1) suy ra xảy ra 6 trường hợp:
\(\hept{\begin{cases}y-2^k=9\\y+2^k=17\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\2^k=4\end{cases}\Leftrightarrow.}\hept{\begin{cases}k=2\\y=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=13\end{cases}\left(tm\right).}}\)
\(\hept{\begin{cases}y-2^k=-17\\y+2^k=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-13\\2^k=4\end{cases}\Leftrightarrow}\hept{\begin{cases}k=2\\y=-13\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-13\end{cases}}\left(tm\right).}\)
\(\hept{\begin{cases}y-2^k=3\\y+2^k=51\end{cases}\Leftrightarrow\hept{\begin{cases}y=27\\2^k=24\end{cases}}}\)(vì không có k nguyên nào để \(2^k=24\)) => loại
\(\hept{\begin{cases}y-2^k=-51\\y+2^k=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-27\\2^k=24\end{cases}\left(loại\right).}\)
\(\hept{\begin{cases}y-2^k=-153\\y+2^k=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-77\\2^k=76\end{cases}}\)(vì không có k nguyên nào để \(2^k=76\)) => loại
\(\hept{\begin{cases}y-2^k=1\\y+2^k=153\end{cases}\Leftrightarrow}\hept{\begin{cases}y=77\\2^k=76\end{cases}\left(loại\right)}\)
Vậy các nghiệm nguyên của phương trình đã cho là \(\left(x,y\right)=\left(4;13\right),\left(4;-13\right).\)
mnb,.mnbhgvjbnmkjlbh nkjnb mhjnugvhjygftyuygyh