Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình vội nên suy nghĩ có 5 phút nếu sai sót gì mong bạn thông cảm
\(\Leftrightarrow2cos^2\left(x+\frac{\pi}{3}\right)-1+3cos\left(x+\frac{\pi}{3}\right)+2=0\)
\(\Leftrightarrow2cos^2\left(x+\frac{\pi}{3}\right)+3cos\left(x+\frac{\pi}{3}\right)+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x+\frac{\pi}{3}\right)=-1\\cos\left(x+\frac{\pi}{3}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\pi+k2\pi\\x+\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x+\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(sinx+1\right)^3-m^3+\left(sinx+1-m\right)=0\)
\(\Leftrightarrow\left(sinx+1-m\right)\left[\left(sinx+1+\frac{m}{2}\right)^2+\frac{3m^2}{4}+1\right]=0\)
\(\Leftrightarrow sinx+1-m=0\)
\(\Leftrightarrow m=sinx+1\)
Mà \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)
\(\Rightarrow0\le m\le2\)
\(3cosx+3sin\left(x+\dfrac{\pi}{7}\right)=0\)
\(\Leftrightarrow cosx+cos\left(\dfrac{5\pi}{14}-x\right)=0\)
\(\Leftrightarrow2cos\dfrac{5\pi}{28}.cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow x-\dfrac{5\pi}{28}=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{19\pi}{28}+k\pi\)
\(\Leftrightarrow sinx.cosx+2sinx+\left(1-cos^2x-3cosx-3\right)=0\)
\(\Leftrightarrow sinx\left(cosx+2\right)-\left(cosx+1\right)\left(cosx+2\right)=0\)
\(\Leftrightarrow\left(sinx-cosx-1\right)\left(cosx+2\right)=0\)
\(\Leftrightarrow sinx-cosx=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
Đề như vậy hả bạn: \(\frac{3cosx+4sinx+6}{3cosx+4sinx+1}=2\)
Pt: \(\Rightarrow-3\left(cos^2x-sin^2x\right)-\sqrt{3}sin2x=0\)
\(\Rightarrow-3cos2x-\sqrt{3}sin2x=0\)
\(\Rightarrow sin2x+\sqrt{3}cos2x=0\)
\(\Rightarrow2sin\left(2x+\dfrac{\pi}{3}\right)=0\) \(\Rightarrow sin\left(2x+\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow2x+\dfrac{\pi}{3}=k\pi\left(k\in Z\right)\)
\(\Rightarrow x=-\dfrac{\pi}{6}+k\dfrac{\pi}{2}\)