\(\dfrac{2x+1}{6}\)-\(\dfrac{x-2}{4}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8+20x-12=0\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

24 tháng 3 2017

bạn nên bổ sung chữ "bất"haha

1)

\(x-\dfrac{x-1}{3}+\dfrac{x+2}{6}>\dfrac{2x}{5}+5\\ \Leftrightarrow x-\dfrac{x-1}{3}+\dfrac{x+2}{6}-\dfrac{2x}{5}-5>0\\ \Leftrightarrow\dfrac{30x-10\left(x-1\right)+5\left(x+2\right)-2x\cdot6-5\cdot30}{30}>0\\ \Leftrightarrow30x-10x+10+5x+10-12x-150>0\\ \Leftrightarrow30x-10x=5x-12x>-10-10+150\\ \Leftrightarrow13x>130\\ \Leftrightarrow13x\cdot\dfrac{1}{13}>130\cdot\dfrac{1}{13}\\ \Leftrightarrow x>10\)

Vậy tập ngiệm của bât hương trình là {x/x>10}

mình mới học đến đây nên cách giải còn dài, thông cảm nha

24 tháng 3 2017

2)

\(\dfrac{2x+6}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{x+3}{3}-\dfrac{x-2}{9}-1< 0\\ \Leftrightarrow\dfrac{3\left(x+3\right)-x+2-9}{9}< 0\\ \Leftrightarrow3x+9-x+2-9< 0\\ \Leftrightarrow3x-x< -9+9-2\\ \Leftrightarrow2x< -2\\ \Leftrightarrow2x\cdot\dfrac{1}{2}< -2\cdot\dfrac{1}{2}\Leftrightarrow x< -1\)

Vậy tập nghiệm của bất phương trình là {x/x<-1}

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3
4 tháng 3 2018

a.

3x - 2 = 2x - 3

<=> 3x -2x = -3+2

<=> x = -1

Vậy.............

b.

\(5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

Vậy..........

4 tháng 3 2018

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

10 tháng 5 2018

b.\(x^3-16x^2+64x=0\)

=>\(x^3-8x^2-8x^2+64x=0\)

=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)

=>\(x\left(x-8\right)\left(x-8\right)=0\)

=>\(x=0\)\(x-8=0\)

=>x=0 và x= 8

Vậy S={0; 8}

10 tháng 5 2018

\(|6x-1|=2x+5\)

-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow6x-1=2x+5\)

\(\Leftrightarrow6x-2x=5+1\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)

-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow-6x+1=2x+5\)

\(\Leftrightarrow-6x-2x=5-1\)

\(\Leftrightarrow-8x=4\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)

Vậy S={\(-\dfrac{1}{2}\)}

4 tháng 3 2018

a) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow x\left(x-2\right)=x^2+4\)

\(\Leftrightarrow x^2-2x=x^2+4\)

\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)

Vậy phương trình vô nghiệm

4 tháng 3 2018

b) ĐKXĐ: \(x\ne3;x\ne-1\)

Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)

\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=0\)

a)

\(4x-10< 0\\ 4x< 10\\ x< \dfrac{10}{4}=\dfrac{5}{2}\)

b)

\(2x+x+12\ge0\\ 3x\ge-12\\ x\ge-\dfrac{12}{3}=-4\)

c)

\(x-5\ge3-x\\ 2x\ge8\\ x\ge4\)

d)

\(7-3x>9-x\\ -2>2x\\ x< -1\)

đ)

\(2x-\left(3-5x\right)\le4\left(x+3\right)\\ 2x-3+5x\le4x+12\\ 3x\le15\\ x\le5\)

e)

\(3x-6+x< 9-x\\ 5x< 15\\ x< 3\)

f)

\(2t-3+5t\ge4t+12\\ 3t\ge15\\ t\ge5\)

g)

\(3y-2\le2y-3\\ y\le-1\)

h)

\(3-4x+24+6x\ge x+27+3x\\ 0\ge2x\\ 0\ge x\)

i)

\(5-\left(6-x\right)\le4\left(3-2x\right)\\ 5-6+x\le12-8x\\ \\ 9x\le13\\ x\le\dfrac{13}{9}\)

k)

\(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\\ 10x-15-20x+28\ge19-2x-22\\ 13-10x\ge-2x-3\\ -8x\ge-16\\ x\le\dfrac{-16}{-8}=2\)

l)

\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\\ \dfrac{40x-100}{60}-\dfrac{90x-30}{2}< \dfrac{36-12x}{60}-\dfrac{30x-15}{60}\\ \Rightarrow40x-100-90x+30< 36-12x-30x+15\\ 130-50x< 51-42x\\ 92x< -79\\ x< -\dfrac{79}{92}\)

m)

\(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\\ \dfrac{10x}{2}-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+\dfrac{2x}{2}\\ \Rightarrow10x-3+2x>7x-5+2x\\ 12x-3>9x-5\\ 3x>-2\\ x>-\dfrac{2}{3}\)

n)

\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\\ \dfrac{28x-8}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3x-6}{12}\\ \Rightarrow28x-8-24x< 60-3x+6\\ 4x-8< -3x+66\\ 7x< 74\\ x< \dfrac{74}{7}\)

25 tháng 8 2017

a) \(4x-10< 0\)

\(\Leftrightarrow4x< 10\)

\(\Leftrightarrow x< \dfrac{5}{2}\)

b) ???

c) \(x-5\ge3-x\)

\(\Leftrightarrow2x-5\ge3\)

\(\Leftrightarrow2x\ge8\)

\(\Leftrightarrow x\ge4\)

d) \(7-3x>9-x\)

\(\Leftrightarrow7-2x>9\)

\(\Leftrightarrow-2x>2\)

\(\Leftrightarrow x< -1\)

đ) ???

e) \(3x-6+x< 9-x\)

\(\Leftrightarrow4x-6< 9-x\)

\(\Leftrightarrow5x-6< 9\)

\(\Leftrightarrow5x< 15\)

\(\Leftrightarrow x< 3\)

f) ???

g) ???

h) \(3-4x+24+6x\ge x+27+3x\)

\(\Leftrightarrow2x+27\ge4x+27\)

\(\Leftrightarrow-2x\ge0\)

\(\Leftrightarrow x\le0\)

i) \(5-\left(6-x\right)\le4\left(3-2x\right)\)

\(\Leftrightarrow5-6+x\le12-8x\)

\(\Leftrightarrow x-1\le12-8x\)

\(\Leftrightarrow9x-1\le12\)

\(\Leftrightarrow9x\le13\)

\(\Leftrightarrow x\le\dfrac{13}{9}\)

k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28\ge19-2x-22\)

\(\Leftrightarrow-10x+23\ge-3-2x\)

\(\Leftrightarrow-8x+13\ge-3\)

\(\Leftrightarrow-8x\ge-16\)

\(\Leftrightarrow x\ge2\)

l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\)

\(\Leftrightarrow-\dfrac{5}{6}x-\dfrac{7}{6}< -\dfrac{7}{10}x+\dfrac{17}{20}\)

\(\Leftrightarrow-\dfrac{2}{15}x-\dfrac{7}{6}< \dfrac{17}{20}\)

\(\Leftrightarrow-\dfrac{2}{15}x< \dfrac{121}{60}\)

\(\Leftrightarrow x>-\dfrac{121}{8}\)

m, n) làm tương tự:

đáp án: m. \(x>-\dfrac{2}{3}\); n. \(x< \dfrac{74}{7}\)

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

20 tháng 12 2018

a.

\(\dfrac{x+3}{x-2}+\dfrac{4+x}{2-x}\\ =\dfrac{x+3}{x-2}-\dfrac{4+x}{x-2}\\ =\dfrac{x+3-4-x}{x-2}\\ =-\dfrac{1}{x-2}\)

b. \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

\(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x}{2x\left(x+3\right)}+\dfrac{4x+6}{2x\left(x+3\right)}=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x^2+3x+2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x\left(x+3\right)+2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{x+2}{2x}\)

c. \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

d. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)

\(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}:\dfrac{-x\left(x+3\right)}{3x-1}\)

\(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}.\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}\)

\(=-\dfrac{2}{x^2}\)

20 tháng 12 2018

bị mỏi tay nhỉ