\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

22 tháng 9 2017

kết quả là 100 nhá bạn. phát, mình vừa vô à, kb nha 

24 tháng 9 2017

\(\sqrt{3x^2-5x+1}-\sqrt{3x^2-3x-3}\)=\(\sqrt{x^2-2}-\sqrt{x^2-3x+4}\) (dk tu xd)

\(\Leftrightarrow\frac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\)=\(\frac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\frac{2}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\right)=0\)

\(\Leftrightarrow x=2\)

4 tháng 8 2019

Nhiều vậy sao giải @@

a) Đặt \(a=\sqrt{1+x}+\sqrt{8-x}\)

\(\Leftrightarrow a^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow\frac{a^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(pt\Leftrightarrow a+\frac{a^2-9}{2}=3\)

\(\Leftrightarrow\frac{a^2+2a-9}{2}=3\)

\(\Leftrightarrow a^2+2a-9=6\)

\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)

Tới đây thay vào rồi tìm x

b) \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)

Ta có : \(a^2+b^2=x^2-x+1+x+1=x^2+2\)

\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab+2b^2-ab=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

Tới đây thay vào rồi lại giải tiếp

p/s: Mình bận rồi, bao giờ rảnh giải tiếp

26 tháng 7 2019

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)

\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{4-x}+1}+2x+1\right)=0\)

\(\Rightarrow x=3\)

phương trình còn lại mk chưa giải đc nhưng nó vô nghiệm

26 tháng 7 2019

Em thử câu c nha, sai thì thôi

c) ĐK: \(x\ge-1\).Nhận xét x = 0 là không phải nghiệm, xét x khác 0:

Nhân liên hợp ta được \(\left(x+4\right).\left(\frac{x}{\sqrt{x+1}-1}\right)^2=x^2\)

\(\Leftrightarrow\frac{x+4}{\left(\sqrt{x+1}-1\right)^2}=1\Leftrightarrow x+4=\left(\sqrt{x+1}-1\right)^2\)

\(\Leftrightarrow x+4=x+2-2\sqrt{x+1}\) (rút gọn vế phải)

\(\Leftrightarrow\sqrt{x+1}=-1\left(\text{vô lí}\right)\)

Vậy pt vô nghiệm