K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

phương trình có : \(\Delta=b^2-4ac=7^2-4.3.2=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{7+\sqrt{25}}{6}=2\\x_2=\dfrac{7-\sqrt{25}}{6}=\dfrac{1}{3}\end{matrix}\right.\)

vậy phương trình đã cho tập nghiệm \(S=\left\{\dfrac{1}{3};2\right\}\)

13 tháng 5 2022

`3x^2-7x+2=0`

`<=>3x^2-6x-x+2=0`

`<=>3x(x-2)-(x-2)=0`

`<=>(x-2)(3x-1)=0`

`<=>` $\left[\begin{matrix} x-2=0\\ 3x-1=0\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x=2\\ x=\dfrac{1}{3}\end{matrix}\right.$

Vậy `S={2;1/3}`

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

Lời giải:
ĐK: $x\geq \frac{-18}{7}$

PT $\Leftrightarrow x^2+3x-4-3(\sqrt{x+3}-2)-(\sqrt{7x+18}-5)=0$

$\Leftrightarrow (x-1)(x+4)-3.\frac{x-1}{\sqrt{x+3}+2}-\frac{7(x-1)}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x-1)\left(x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}\right)=0$

Xét các TH:

Nếu $x-1=0\Rightarrow x=1$ (thỏa mãn)

Nếu $x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x+2)+1-\frac{3}{\sqrt{x+3}+2}+1-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow x+2+\frac{\sqrt{x+3}-1}{\sqrt{x+3}+2}+\frac{\sqrt{7x+18}-2}{\sqrt{7x+18}+5}=0$

\(\Leftrightarrow (x+2)+\frac{x+2}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7(x+2)}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}=0\)

\(\Leftrightarrow (x+2)\left( 1+\frac{1}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn dương nên $x+2=0\Leftrightarrow x=-2$

Vậy $x=-2$ hoặc $x=1$

26 tháng 7 2020

a, \(x^2=\frac{1}{9}\)

=> \(x=\pm\frac{1}{3}\)

b, \(x^2=\frac{1}{3}\)

=> \(x=\pm\frac{1}{\sqrt{3}}\)

c, \(x^2=\frac{2}{7}\)

=> \(x=\pm\sqrt{\frac{2}{7}}\)

d, Vô nghiệm vì \(x^2+2019\ge2019>0\forall x\)

e, \(x=\pm\sqrt{3}\)

g, Vô nghiệm vì -2 < 0

h, \(x=0\)

13 tháng 5 2020

cu dương to không

16 tháng 6 2018

<=> (x+1)(x+2)(x+3)(x+4) = 24 
<=> (x+1)(x+4)(x+2)(x+3) = 24 
<=> (x^2 + 5x +4)(x^2 + 5x + 6) = 24 

Đặt x^2 + 5x +4 =t 

=> x^2 + 5x +6= t+2

=> t(t+2)=24

<=> t^2 + 2t -24 =0

<=> (t+6)(t-4)=0

<=> t=-6 hoặc t=4

Ở đây thay vô rồi giải thôi, không biết đúng không

16 tháng 6 2018

x2+7x+5 ko bằng (x+3)(x+4)

a, \(x^2-49x-50=0\Leftrightarrow\left(x-1\right)\left(x+50\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-50\end{cases}}\)

b, \(3x^2-7x-10=0\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\Leftrightarrow\left(3x-10\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=10\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}}\)

c, \(x^2-4x-5=0\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

d, \(x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

e, \(x^2+2020x-2021=0\)

=> vô nghiệm 

f, \(x^2+9x-10=0\Leftrightarrow\left(x-1\right)\left(x+10\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}}\)

g, \(-5x^2+4x+1=0\Leftrightarrow5x^2+x-5x-1=0\Leftrightarrow x\left(5x+1\right)-1\left(5x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

h, \(4x^2+3x-7=0\Leftrightarrow x\left(4x+7\right)-1\left(4x+7\right)=0\Leftrightarrow\left(x-1\right)\left(4x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{4}\end{cases}}\)

21 tháng 4 2020

a) (x-50)(x+1)=0

<=>x=50 hoặc x=1

b) (x+1)(x-10/3)=0

<=>x=-1 hoặc x=10/3

c)  (x-5)(x+1)=0

<=>x=5 hoặc x=-1

d)  (x+3)(x-1)=0

<=>x=-3 hoặc x=1

e) (x-1)(x+2021)=0

<=>x=1 hoặc x=-2021

f) (x-1)(x+10)=0

<=> x=1 hoặc x=-10

g) (x+1/5)(x-1)=0

<=>x=1 hoặc x=-1/5

h) (x-1)(x+7/4)=0

<=> x=1 hoặc x=-7/4

Học tốt. tk vs ạ

NV
3 tháng 5 2019

\(x^3-3x^2-3x-4=0\)

\(\Leftrightarrow x^3-3x^2-4x+x-4=0\)

\(\Leftrightarrow x\left(x^2-3x-4\right)+x-4=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-4\right)+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x^2+x+1=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=4\)