K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

đề thế này ak \(\left(2x+4\right)\sqrt{x+8}=3x^2+7x+8\)

22 tháng 2 2016

viet^2 thế nào đấy

6 tháng 7 2017

\(\sqrt{x^2+x+2}=\frac{3x^2+3x+2}{3x+1}\)

Đk:.... tự xác định :v

\(\Leftrightarrow\sqrt{x^2+x+2}-2=\frac{3x^2+3x+2}{3x+1}-2\)

\(\Leftrightarrow\frac{x^2+x+2-4}{\sqrt{x^2+x+2}+2}=\frac{3x^2-3x}{3x+1}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{\sqrt{x^2+x+2}+2}-\frac{3x\left(x-1\right)}{3x+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}\right)=0\)

Dễ thấy: \(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

6 tháng 7 2017

Thắng ơi @@
Bài này liên hợp kép kìa .
Trong cái kia vẫn còn nghiệm x=1 nữa !!!

NV
13 tháng 8 2020

ĐKXĐ: \(-\frac{16}{3}\le x\le4\)

\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)

\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)

\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)

\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)

\(\Leftrightarrow x^2-3x=0\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Đỗ Thanh Hải: uh ha, mình đã sửa lại rồi.

15 tháng 8 2015

ĐK: 2x + 3 \(\ge\) 0; x+ 1 \(\ge\) 0  => x \(\ge\) -1

Đặt \(t=\sqrt{2x+3}+\sqrt{x+1}\left(t\ge0\right)\)

=> \(t^2=3x+4+2.\sqrt{\left(2x+3\right)\left(x+1\right)}=3x+4+2\sqrt{2x^2+5x+3}\)

PT đã cho trở thành: t = t 2 - 20 <=> t2 - t - 20 = 0 <=> t = 5 ; t = -4 

t = 5 thỏa mãn => \(\sqrt{2x+3}+\sqrt{x+1}=5\) (*)

Nhận xét : x = 3 là nghiệm của phương trình

+) x < 3 => \(\sqrt{2x+3}+\sqrt{x+1}<\sqrt{9}+\sqrt{4}=5\) => x < 3 không là nghiệm của (*)

+) x > 3 => \(\sqrt{2x+3}+\sqrt{x+1}>\sqrt{9}+\sqrt{4}=5\)=>  x> 3 không là nghiệm của (*)

vậy PT có 1 nghiệm duy nhất x = 3

 

 

2 tháng 9 2020

\(ĐKXĐ:x\ge-1\)

Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\\\sqrt{x+1}=b\end{cases}\left(a,b\ge0\right)\Rightarrow}a^2+b^2-4=3x\)

Phương trình đã cho trở thành :

\(a+b=a^2+b^2-4+2ab-16\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-20=0\)

\(\Leftrightarrow\left(a+b-5\right)\left(a+b+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b=5\\a+b=-4\end{cases}}\) \(\Leftrightarrow a+b=5\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=21-3x\)

\(\Leftrightarrow\hept{\begin{cases}21-3x\ge0\\4.\left(2x+3\right)\left(x+1\right)=\left(21-3x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le7\\4.\left(2x^2+5x+3\right)=441-126x+9x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-146x+429=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le7\\\left(x-3\right)\left(x-143\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\\x=143\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le7\\\left(x-3\right)\left(x-143\right)=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\\x=143\end{cases}}\end{cases}}\)\(\Leftrightarrow x=3\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=3\)

16 tháng 1 2018

Đk : x^2-3x+1 >=0

Đặt : \(\sqrt{x^2-3x+1}\)=  a 

pt <=> a^2+4 = 4a

<=> a^2-4a+4 = 0

<=> (a-2)^2 = 0

<=> a-2 = 0

<=> a=2

<=> \(\sqrt{x^2-3x+1}\)=  2

<=> x^2-3x+1 = 4

<=> x^2-3x-3 = 0

<=> (x^2-3x+2,25)-5,25 = 0

<=> (x-3/2)^2 = 21/4

<=> x = \(\frac{3+-\sqrt{21}}{2}\)(tm)

Vậy ...............

Tk mk nha