K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

đôi lúc là +- 10 thì sao 

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

13 tháng 2 2016

đây là pt đỗi xứng bậc chẵn bạn ơi
cos cachs giải đó bạn

13 tháng 2 2016

(+) Kiểm tra x = 0 , sau đó chia cả hai vế cho x^2

(+) đặt x- 1/x = a => x^2 + 1/x^2 = a^2 + 2 

Thay vô giải pt bậc hai 

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

27 tháng 5 2018

2x4-x3-2x2-x+2=0

\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0

\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0

\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0

\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0

\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0

\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)

\(\Leftrightarrow\)x=1