Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 2 vế của phương trình với 2 ta có: \(\frac{2-x}{2016}+1=\left(\frac{1-x}{2017}+1\right)-\left(\frac{x}{2018}-1\right)\)
\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}-\frac{x-2018}{2018}\)\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)
Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)
Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017
Xét:
1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài
2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1
=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm
3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0
=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm
Vậy phương trình có 2 nghiệm là ..................
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)
\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)
\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(< =>x-2020=0< =>x=2020\)
Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)
<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)
<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Vì \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0
Vậy x=0
Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)
mk ko chép lại đề nha:
\(\Rightarrow\)\(\frac{x-2}{2017}\)\(-1+\frac{x-3}{2016}\)\(-1=\frac{x-4}{2015}\)\(-1+\frac{x-5}{2014}\)\(-1\)
\(\Rightarrow\)\(\frac{x-2-2017}{2017}\)\(+\frac{x-3-2016}{2016}\)\(=\frac{x-4-2015}{2015}\)\(+\frac{x-5-2014}{2014}\)
\(\Rightarrow\)\(\frac{x-2019}{2017}\)\(+\frac{x-2019}{2016}\)\(-\frac{x-2019}{2015}\)\(-\frac{x-2019}{2014}\)\(=0\)
\(\Rightarrow\)\(\left(x-2019\right)\)\(\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\)\(=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-2019=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}=0\left(voli\right)\end{cases}}\)
\(\Rightarrow\)\(x-2019=0\)
\(\Rightarrow\)\(x=-2019\)
Chỗ mình nghi voli là vô lí nha
chúc bạn học tốt
\(\Leftrightarrow\frac{2016}{-x}-2017< 0\Leftrightarrow\frac{2016+2017.x}{-x}< 0\)
\(\orbr{\begin{cases}x>0\\x< -\frac{2016}{2017}\end{cases}}\)