Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
Đặt : x+3 = a
=> x+5 = a+2
pt <=> a^4+(a+2)^4 = 16
<=> a^4+a^4+8a^3+24a^2+32a+16 = 16
<=> 2a^4+8a^3+24a^2+32a = 0
<=> a^4+4a^3+12a^2+16a = 0
<=> a.(a^3+4a^2+12a+16) = 0
<=> a.[(a^3+2a^2)+(2a^4+4a)+(8a+16)] = 0
<=> a.(a+2).(a^2+2a+8) = 0
<=> a.(a+2) = 0 ( vì a^2+2a+8 > 0 )
<=> a=0 hoặc a+2=0
<=> a=0 hoặc a=-2
<=> x+3=0 hoặc x+3=-2
<=> x=-3 hoặc x=-5
Vậy ..............
Tk mk nha
Ta có: \(\left(x+3\right)^4+\left(x+5\right)^4=16\left(1\right)\)
Đặt x + 4 = y thì phương trình (1) trở thành:
\(\left(y-1\right)^4+\left(y+1\right)^4=16\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=16\)
\(\Leftrightarrow2y^4+12y^2+2=16\)
\(\Leftrightarrow2\left(y^4+6y^2+1\right)=16\)
\(\Leftrightarrow y^4+6y^2+1=8\)
\(\Leftrightarrow y^4+6y^2+1-8=0\)
\(\Leftrightarrow y^4+7y^2-y^2-7=0\)
\(\Leftrightarrow y^2\left(y^2-1\right)-7\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-7\right)\left(y^2-1\right)=0\)
Vì \(y^2-7\ne0\)
\(\Rightarrow y^2-1=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
Với y = 1 => x + 4 = y => x + 4 = 1 => x = -3
Với y = -1 => x + 4 = y => x + 4 = -1 => x = -5
Vậy x = {-3;-5}
a) \(x^4+x^3+x+1\)
\(\left(x^4+x^3\right)+\left(x+1\right)\)
\(x^3\left(x+1\right)\)+(x+1)
(x+1)(\(x^3+1\))
e)\(ax^2+ay-bx^2-by\)
\(\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(\left(x^2+y\right)\left(a-b\right)\)
\(a,x^3+8=x^2-4\)
\(x^3+12-x^2=0\)
\(\left(x+2\right)\left(x^2-3x+6\right)=0\)
\(x=2;x^2-3x=6\)
\(x\left(x-3\right)=6\)
\(x=6;9\)
ko bt cách lm chỉ bt thử nghiệm thui ==
Bài 2 Với giá trị nào của m thì phương trình :
(m+5).x-2m.(x-1)=4
Gỉa sử m=1
\(\Rightarrow\left(1+5\right)x-2\left(1-1\right)=4\)
\(\Rightarrow6x-0=4\)
\(\Rightarrow6x=4\)
\(\Rightarrow x=\frac{2}{3}\)( tm )
từ từ đổi may lm nốt :v
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left[\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\left(\frac{x-4+x-5}{\left(x-5\right)\left(x-4\right)}\right)\right]=0\)
\(\Leftrightarrow x\left(\frac{2x-9}{x^2-9x+18}-\frac{2x-9}{x^2-9x+20}\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\) Vì \(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\ne0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-9=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}\)
#Hok tốt