Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
Đặt \(x^2+10x=t\)
Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)
\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)
Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)
Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)
Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)
Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^
Lời giải:
PT \(\Leftrightarrow [(x+2)(x+8)][(x+4)(x+6)]+16=0\)
\(\Leftrightarrow (x^2+10x+16)(x^2+10x+24)+16=0\)
\(\Leftrightarrow a(a+8)+16=0\) (đặt \(x^2+10x+16=a)\)
\(\Leftrightarrow (a+4)^2=0\Rightarrow a+4=0\)
\(\Leftrightarrow x^2+10x+20=0\)
\(\Leftrightarrow (x+5)^2=5\Rightarrow x=\pm \sqrt{5}-5\)
Vậy.........
tổng các hệ số =0 nên có 1 nghiệm là 1 còn mấy cái sau đều là số vô tỷ nói thẳng là ko có nghiệm hữu tỉ
(x-6)^4+(x-8)^4=16
Đặt x-7=y
\(\Rightarrow\)(y+1)^4+(y-1)^4=16
y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1-16=0
2y^4+12y^2-14=0
y^4+6y^2-7=0
(y^4-y^2)+(7y^2-7)=0
y^2(y^2-1)+7(y^2-1)=0
(y^2-1)(y^2+7)=0
(y-1)(y+1)(y^2+7)=0
Vì y^2+7>0\(\forall\)y
\(\Rightarrow\)y-1=0 hoặc y+1=0
y=1 hoặc y=-1
+) y=1 thì x-7=1 vậy x=8
+)y=-1 thì x-7=-1 vậy x=6
Vậy x=8;x=6
x(x + 2)(x + 4)(x + 6) = x4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x2 + 4)(x - 2) ] = 0
=> (x + 2). (x3 + 10x2 + 24x - x3 + 2x2 - 4x + 8) = 0
=> (x + 2) . (12x2 + 20x + 8) = 0
=> (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
x(x + 2)(x + 4)(x + 6) = x 4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x 2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x 2 + 4)(x - 2) ] = 0
=> (x + 2). (x 3 + 10x 2 + 24x - x 3 + 2x 2 - 4x + 8) = 0
=> (x + 2) . (12x 2 + 20x + 8) = 0 => (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian
( x + 2 ) . ( x + 4 ) . ( x + 6 ) . ( x + 8 ) + 16 = 0 .
( x + 2 ) . ( x + 4 ) . ( x + 6 ) . ( x + 8 ) = - 16 .
x mũ 4 . ( 2 + 4 + 6 + 8 ) = - 16 .
x mũ 4 . 20 = - 16 .
x mũ 4 = - 4 / 5 .
4
x = √ - 4 / 5 .