Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
a) (x + 6)(3x + 1) + x2 - 36 = 0
<=> 3x2 + x + 18x + 6 + x2 - 36 = 0
<=> 4x2 + 19x - 30 = 0
<=> 4x2 + 24x - 5x - 30 = 0
<=> 4x(x + 6) - 5(x + 6) = 0
<=> (x + 6)(4x - 5) = 0
<=> x + 6 = 0 hoặc 4x - 5 = 0
<=> x = -6 hoặc x = 5/4
Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
a) \(\left(2x^2+x-6\right)^2+3\left(2x^2+x-3\right)-9=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)^2+3\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-6+3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x=1\\x-\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-2;\frac{3}{2};1;-\frac{3}{2}\right\}\)
b) \(2y^4-9y^3+14y^2-9y+2=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-1\right)^2\left(2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\\left(y-1\right)^2=0\end{cases}}\)hoặc \(2y-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y-1=0\end{cases}}\)hoặc \(2y=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)hoặc \(y=\frac{1}{2}\)
Vậy tập nghiệm của PT là \(S=\left\{2;1;\frac{1}{2}\right\}\)
a) Đặt 2x2 + x - 6 = a
pt <=> a2 + 3( a + 3 ) - 9 = 0
<=> a2 + 3a + 9 - 9 = 0
<=> a( a + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 6 + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 3 ) = 0
<=> ( 2x2 + 4x - 3x - 6 )( 2x2 - 2x + 3x - 3 ) = 0
<=> [ 2x( x + 2 ) - 3( x + 2 ) ][ 2x( x - 1 ) + 3( x - 1 ) ] = 0
<=> ( x + 2 )( 2x - 3 )( x - 1 )( 2x + 3 ) = 0
<=> x = -2 hoặc x = 1 hoặc x = ±3/2
Vậy S = { -2 ; 1 ; ±3/2 }
b) 2y4 - 9y3 + 14y2 - 9y + 2 = 0
<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0
<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0
<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0
<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0
<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0
<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0
<=> y = 2 hoặc y = 1 hoặc y = 1/2
Vậy S = { 2 ; 1 ; 1/2 }
a/ \(\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)
\(a,\left(x-2\right)\left(2x-5\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=5\Leftrightarrow x=\frac{5}{2}\end{cases}}}\)
Vậy ....
\(b,\left(0,2x-3\right)\left(0,5x-8\right)=0\left(\text{Mạo muội sửa đề nha 0,5 thành 0,5x}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}0,2x-3=0\\0,5x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0,2x=3\\0,5x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\\x=16\end{cases}}\)
Vậy ... ( có j sai thì bỏ qua cho)
\(c,2x\left(x-6\right)+3\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\2x=-3\Leftrightarrow x=-\frac{3}{2}\end{cases}}}\)
Vậy ...
\(d,\left(x-1\right)\left(2x-4\right)\left(3x-9\right)=0\)
\(\Leftrightarrow2.3\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
( ko có ngoặc vuông 3 cái nên mk trình bày kiểu này)
+ TH1:
x-1=0 <=> x= 1
+ TH2:
x-2=0 <=> x=2
+TH3:
x-3 = 0 <=> x = 3
Đề bài sai ! Sửa ạ :
a) \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)
b) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-4=0\\x^2+2x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\\left(x+1\right)^2+1=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)
\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)
\(\Rightarrow6-2x=0\Rightarrow x=3\)