K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

Xét tích (x+1)(x+2)(x+3)(x+4) là tích của 4 số tự nhiên liên tiếp.

Mà ta thấy 24 = 1 . 2 . 3 . 4

Vậy x + 1 = 1 ; x + 2 = 2 ; x + 3 = 3 ; x + 4 = 4

Do đó x = 0

5 tháng 8 2015

(x+1)(x+2)(x+3)(x+4)= 24

<=> (x+1)(x+2)(x+3)(x+4)-24=0

<=>(x+1)(x+4)(x+2)(x+3)-24=0

<=>(x2+5x+4)(x2+5x+6)-24=0

Đặt t=x2+5x+4 ta được:

t.(t+2)-24=0

<=>t2+2t-24=0

<=>t2-4t+6t-24=0

<=>t.(t-4)+6.(t-4)=0

<=>(t-4)(t+6)=0

<=>t-4=0 hoặc t+6=0

thay t=x2+5x+4 ta được:

x2+5x=0 hoặc x2+5x+10=0

Vì x2+5x+10=x2+2.x.5/2+25/4+15/4

=(x+5/2)2+15/4>0

nên 

x2+5x=0

<=>x.(x+5)=0

<=>x=0 hoặc x=-5

5 tháng 3 2019

(x+1).(x+2).(x+3).(x+4) - 24 = 0

(x2 + 5x + 4).(x2 + 5x + 6) - 24 = 0

(x2 + 5x + 5-1).(x2 + 5x + 5 + 1) - 24 = 0

(x2 + 5x + 5)2 - 1  - 24 = 0

(x2 + 5x + 5 - 5).(x2 + 5x + 5 + 5) = 0

x.(x+5) .(x2 + 5x + 10) = 0

=> x = 0

x+ 5 = 0 => x = -5

\(x^2+5x+10>0\)

KL:..

5 tháng 3 2019

    (x+1)(x+2)(x+3)(x+4) - 24 = 0

<=> [(x+1)(x+4)][(x+2)(x+3)] - 24 =0

<=> (x^2+4x+x+4)(x^2+3x+2x+6) - 24 = 0

<=> (x^2+5x+4)(x^2+5x+6) - 24 = 0

  Đặt x^2+5x+5 = a, ta có

       (a-1)(a+1) - 24 = 0

<=> a^2 - 1 - 24 = 0

<=> a^2 - 25 =0

<=> a = 5

hay x^2 + 5x + 5 = 5

<=> x(x+5) = 5 - 5 = 0

<=> x=0      hoặc   x+5 = 0 <=> x= -5

   Vậy tập ngh của p.tr là S = { 0; -5 }

6 tháng 4 2018

1, \(_{\left|x^2-5x-6\right|=x^2+x-24}\) (1)

Điều kiện \(x^2+x-24\ge0\) <=> \(\orbr{\begin{cases}x\ge\frac{-1+\sqrt{97}}{2}\\x\le\frac{-1-\sqrt{97}}{2}\end{cases}}\)

Khi đó (1) <=> \(\orbr{\begin{cases}x^2-5x-6=x^2+x-24\\x^2-5x-6=-x^2-x+24\end{cases}}\)

<=> \(\orbr{\begin{cases}-6x=-18\\2x^2-4x-30=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x^2-2x-15=0\end{cases}}\)

<=> \(x\in\left\{-3;3;5\right\}\)

Loại 2 giá trị x = -3 và x = 3 do ko t/m đk bên trên, ta đc x = 5 là nghiệm duy nhất của pt

Vậy tập nghiệm của pt là S = {5}

6 tháng 4 2018

|x^2-5x-6|=x^2+x-24

=>x= 5

|x-1|-2|x-2|+3|x-3|=4

=> x= 5 hoac bang 1 

13 tháng 7 2017

1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

Đặt \(x^2+10x=t\)

Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)

\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)

Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)

Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

18 tháng 7 2017

Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^

30 tháng 1 2016

1)\(\Leftrightarrow2x^2+3x-14=0\)

\(\Rightarrow3^2-\left(-4\left(2.14\right)\right)=121\)

\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{-3+-\sqrt{121}}{4}\)

=>\(x=2hoặc-\frac{7}{2}\)

tối nay tôi làm tiếp cho

30 tháng 1 2016

đây đâu phải là câu trả lời mà mk muốn hỏi

26 tháng 8 2016

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)=24\\ =>\left(x^2+3x\right)\left(x^2+3x+3\right)=24\\\)

Đặt \(x^2+3x=a\)ta có 

=> \(a\left(a+3\right)=24\\ a^2+3a-24=0\\ \)

cầu phân tích đa thức thành nhân tử di minh tinh dc

 X =\(\frac{-3+\sqrt{105}}{2}\)

X = \(\frac{-3-\sqrt{105}}{2}\)

20 tháng 5 2021

Sửa đề:\(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}=\frac{9}{x^2+3x-18}\)

\(\Leftrightarrow\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x-6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+6}-\frac{1}{x-3}+\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}=\frac{4}{3}\)

Tự giải tiếp

20 tháng 5 2021

Quyên sai rồi, tử là 1 mới đc tách kiểu đó, mà 2 pt đó bằng 4/3 thì xét 1 pt thôi được rồi, bước 3 từ dưới lên sai bét 

https://olm.vn/hoi-dap/detail/64436964935.html

11 tháng 4 2019

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24=1.2.3.4=\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

\(S=\left\{-2;0\right\}\)

8 tháng 2 2019

Bài 1 :

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(a=x^2+6x-7\)

\(A=a\left(a-9\right)+8\)

\(A=a^2-9a+8\)

\(A=a^2-8a-a+8\)

\(A=a\left(a-8\right)-\left(a-8\right)\)

\(A=\left(a-8\right)\left(a-1\right)\)

Thay a vào là xong bạn :)

cảm ớn phương nhiều

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)