Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét:
1. Nếu \(x=2015\) hoặc \(x=2016\) thì thỏa mãn đề bài
2. Nếu \(x< 2015\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>0\\\left|x-2016\right|^{2016}>1\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>0+1=1\) (vô nghiệm)
3. Nếu \(x>2016\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>1\\\left|x-2016\right|^{2016}>0\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>1+0=1\) (vô nghiệm)
Vậy phương trình có 2 nghiệm là \(\left(2015;2016\right)\)
*)Xét x < 2015
=> |x - 2016| > 1 <=> |x - 2016|2016 > 1
=> x < 2015 không là nghiệm của pt
**)Xét x > 2016
=> |x - 2015| > 1 <=> |x - 2015|2015 > 1
=> x > 2016 không là nghiệm của pt
***) Xét 2015 < x < 2016
=> 0 < |x - 2015| < 1 (1)
0 < |x - 2016| = |2016 - x|< 1 (2)
=> |x - 2015| + |x - 2016| = |x - 2015| + |2016 - x| = x - 2015 + 2016 - x = 1
Mà: |x - 2015| > |x - 2015|2015 (theo (1)) và |x - 2016| > |x - 2016|2016 (theo (2))
=> |x - 2015|2015 + |x - 2016|2016 < |x - 2015| + |x - 2016| = 1
Vậy phương trình chỉ có 2 nghiệm là x1 = 2015 và x2 = 2016
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
pt <=> (x/2012 - 1) + (x+1/2013 - 1) + (x+2/2014 - 1) + (x+3/2015 - 1) + (x+4/2016 - 1) = 0
<=> x-2012/2012 + x-2012/2013 + x-2012/2014 + x-2012/2015 + x-2012/2016 = 0
<=> (x-2012).(1/2012+1/2013+1/2014+1/2015+1/2016) = 0
<=> x-2012 = 0 ( vì 1/2012+1/2013+1/2014+1/2015+1/2016 > 0 )
<=> x=2012
Vậy x=2012
Tk mk nha
Ta có :
\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Leftrightarrow\)\(\left(\frac{x}{2012}-1\right)+\left(\frac{x+1}{2013}-1\right)+\left(\frac{x+2}{2014}-1\right)+\left(\frac{x+3}{2015}-1\right)+\left(\frac{x+4}{2016}-1\right)=5-5\)
\(\Leftrightarrow\)\(\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Leftrightarrow\)\(\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\ne0\)
\(\Rightarrow\)\(x-2012=0\)
\(\Rightarrow\)\(x=2012\)
Vậy \(x=2012\)
Chúc bạn học tốt ~
\(x^3-x^2+x^2-x+6x-6=0\Leftrightarrow\left(x-1\right)\left(x^2-x+6\right)=0\Leftrightarrow\left(x-1\right)=0\Leftrightarrow x=2;x^2-x+6>0\)
\(4x^2-12x+9=9-5\Leftrightarrow\left(2x-3\right)^2-4=0\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{1}{2};x=\frac{5}{2}\)
khó ( x =2040)
Đặt 2x2+x-2015=a; x2-5x-2016=b
phương trình tương đương a2+4b2=4ab
=> a2-4ab+4b2=0
=> (a-2b)2=0
=> a=2b
vậy 2x2+x-2015=2*(x2-5x-2016)
=> x=\(\frac{-2017}{11}\)
ta có ; x-3/2015 -1 +x-2/2016 -1 = x-2016/2 -1 +x-2015/3-1
x-2018/2015 + x-2018/2016 = x-2018/2 +x-2018/3
(x-2018)*(1/2015+1/2016-1/2-1/3)=0
vi (1/2015+1/2016-1/2-1/3) luon khac 0
suy ra : x-2018 = 0 suy ra x=2018
\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)
trừ 2 vế với 2, ta có:
\(\frac{x-3}{2015}+\frac{x-2}{2016}-2=\frac{x-2016}{2}+\frac{x-2015}{3}-2\)
\(\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)
\(\frac{x-2018}{2015}+\frac{x-2018}{2016}=\frac{x-2018}{2}+\frac{x-2018}{3}\)
\(\left(x-2018\right)\frac{1}{2015}+\left(x-2018\right)\frac{1}{2016}=\left(x-2018\right)\frac{1}{2}+\left(x-2018\right)\frac{1}{3}\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)=0\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Mà \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\ne0\)
\(\Rightarrow x-2018=0\Leftrightarrow x=2018\)
Vậy tập nghiệm của PT là\(S=\left\{2018\right\}\)