Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x+1)(x^2+x+1)=42
=> (x^2+x)(x^2+x+1)=42 (1)
Đặt x^2+x=t
=> x^2+x+1=t+1
=> pt (1) có dạng: t(t+1)=42
=> t^2+t=42
=> 4t^2+4t=168
=> 4t^2+4t+1=169
=> (2t+1)^2=(+-13)^2
Xong tìm t và tự tìm nốt x
b) x(x+1)(x+2)(x+3)=24
=> x(x+3)(x+1)(x+2)=24
=> (x^2+3x)(x^2+3x+2)=24
Đặt x^2+3x+1=t
=> x^2+3x=t-1 và x^2+3x+2=t+1
Xong thay vào tìm t và tự tìm x.
a, \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt x^2+x=a
=>\(a^2+a=42\)
\(a^2+a-42=0\)
\(a^2+7a-6a-42=0\)
\(\left(a+7\right)\left(a-6\right)=0\)
\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
\(\left(x^2+x+7\right)\left(x-2\right)\left(x+3\right)=0\)
x^2+x+7>0
=>(x-2)(x-3)=0
=>x=2,3
b,x(x+1)(x+2)(x+3)=24
[x(x+3)][(x+1)(x+2)]=24
(x^2+3x)(x^2+3x+2)=24
Đặt x^2+3x=a
=>a(a+2)-24=0
=>a^2+2a-24=0
=>a^2+6a-4a-24=0
=>(a-4)(a+6)=0
=>(x^2+3x-4)(x^2+3x+6)=0
=>(x-1)(x+4)(x^2+3x+6)=0
vì (x^2+3x+6)>0
=>(x-1)(x+4)=0
https://olm.vn/hoi-dap/detail/64436964935.html
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24=1.2.3.4=\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
\(S=\left\{-2;0\right\}\)
PT \(\Leftrightarrow\left[x\left(x+1\right)\right].\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(x^2+x=t\) ta được:
\(t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow t^2-6t+4t-24=0\)\(\Leftrightarrow t\left(t-6\right)+4\left(t-6\right)=0\)
\(\Leftrightarrow\left(t-6\right)\left(t+4\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=-4\end{cases}}\)
Suy ra \(\orbr{\begin{cases}x^2+x-6=0\\x^2+x+4=0\end{cases}}\)
Ez rồi.
Ta có : \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)
<=> 2 trường hợp sảy ra là bằng 5 hoặc -5 nhé
a) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt t = x2+ x => \(t\left(t-2\right)=24\) \(\Leftrightarrow t^2-2t=24\Leftrightarrow t^2-2t-24=0\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)
-Nếu t = -4 thì x2 + x = -4 \(\Leftrightarrow x^2+x+4=0\left(voly\right)\)
-Nếu t = 6 thì x2 + x = 6 \(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 2; -3 }
b) \(2x^3+9x^2+7x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\) Hoặc x + 2 = 0 hoặc x + 3 = 0 hoặc 2 x - 1 = 0
\(\Leftrightarrow\) x = -2 hoặc x = -3 hoặc x = 1/2
Vậy phương trình có tập nghiệm S = { -2; -3; 1/2 }
a) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\)( vì x2+1 khác 0 vs mọi x )
<=> x = -1
Vậy phương trình có tập nghiệm S = { - 1 }
b) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)
\(\Leftrightarrow x+1=0\) ( vì \(2x^2+x+5\ne0\) vs mọi x )
<=> x = -1
Vậy phương trình có tập nghiệm S = { - 1 }
c) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)+24=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)+24=0\)
\(\Leftrightarrow\left(x+1\right)^22x+24=0\Leftrightarrow2x\left(x^2+2x+1\right)+24=0\)
\(\Leftrightarrow2x^3+4x^2+2x+24=0\)
\(\Leftrightarrow2\left(x+3\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow x+3=0\) ( vì \(x^2-x+3\ne0\) với mọi x )
<=> x = -3
Vậy phương trình có tập nghiệm S = { - 3 }
\(x^3^{ }+x^2+x+1\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)\)
\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3-1-2x=x^3-x\)
\(\Leftrightarrow-1-2x=-x\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là -1
(x-1)(x2+x+1)-2x=x(x-1)(x+1)
\(\Leftrightarrow\) x3-1-2x=x(x2-1)
\(\Leftrightarrow\) x3-1-2x=x3-x
\(\Leftrightarrow\) x-1-2x=x3-x3
\(\Leftrightarrow\) -x-1=0
\(\Leftrightarrow\) -x=1
\(\Leftrightarrow\) x=-1
Vậy pt có 1 nghiệm là x=-1
Chúc bạn học tốt nha!
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\Leftrightarrow t\left(t-3\right)=4\Leftrightarrow\left(t-\frac{3}{2}\right)^2=4+\frac{9}{4}\)
\(\orbr{\begin{cases}t=\frac{3}{2}+\frac{5}{2}=4\Rightarrow x=+-\sqrt{5}\\t=\frac{3}{2}-\frac{5}{2}=-1\Rightarrow x=0\left(loai\right)\end{cases}}\) nghiệm x=-cawn loại pt (t-3/2)^2=-4+25/4<0 => vo nghiệm
Kết luận nghiệm duy nhất x=căn(5)
cách làm thì đùng nhưng cần xét 2 trường hợp là x>= 2 và x<2 và bài trên mới xét x>= 2
x(x + 1)(x - 1)(x + 2) = 24
<=> x^4 + 2x^3 - x^2 - 2x = 24
<=> x^4 + 2x^3 - x^2 - 2x - 24 = 0
<=> (x - 2)(x + 3)(x^2 + x + 4) = 0
<=> x - 2 = 0 hoặc x + 3 = 0 hoặc x^2 + x + 4 khác 0
<=> x = 2 hoặc x = -3
\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\)\(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\)
\(\Leftrightarrow\) \(\text{ }\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x=a\), ta có: \(a\left(a-2\right)=24\)
\(\Leftrightarrow\) \(a^2-2a-24=0\)
\(\Leftrightarrow\) \(\left(a-6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-6=0\\a+4=0\end{cases}}\) \(\Leftrightarrow\) \(\orbr{\begin{cases}a=6\\a=-4\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2+x=6\\x^2+x=-4\end{cases}}\)\(\Leftrightarrow\) \(\orbr{\begin{cases}x^2+x-6=0\\x^2+x+4=0\end{cases}}\)\(\Leftrightarrow\) \(\orbr{\begin{cases}\left(x+3\right)\left(x-2\right)=0\\x^2+x+\frac{1}{4}+\frac{11}{4}=0\end{cases}}\) (1)
Có : \(x^2+x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge0+\frac{11}{4}>0\forall x\) (2)
(1); (2)\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}}\)
Vậy PT có tập nghiệm: S = {-3; 2}