K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

Đặt \(t=\sqrt{x+2}\ge0\)

pt,=>( t2-2)2+t2-2+6t=18

=> t4-3t2+6t-16=0

=> t4-2t3+2t3-4t2+t2-2t+8t-16=0

=>(t-2)(t3+2t2+t+8)=0

Vì t>/ 0 

=> t-2 =0

=> t=2

=> x+2 =t2=4

=> x =2

17 tháng 7 2020

b) ĐK \(3\le x\le5\)(*)

Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=4\)

Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)

Dấu "=" xảy ra <=> x=4

\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)

Với x=4 thỏa mãn điều kiện (*)

Vậy nghiệm của phương trình là x=4

25 tháng 4 2018

ĐK...

đặt \(\sqrt{x^2-x-6}=a\left(a\ge0\right)\)

Ta có pt <=> \(a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow a-3=0\left(vi:a+3>0\right)\)

đến đây tự làm nhá 

8n

16 tháng 2 2020

một số bằng 4 và hai số kia bằng 1

có 3 nghiệm

16 tháng 2 2020

Bạn giải chi tiết giúp mình được ko

10 tháng 7 2017

đăng ít 1 thôi bn =))

Dài Vãi mik ko bít giải phhương trình sorry nha