\(^{x^2+x-3\sqrt{x^2+x+1}+3}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

\(x^2+x-3\sqrt{x^2+x+1}+3=0\)(Điều kiện: x thuộc R)

<=> \(x^2+x+1-3\sqrt{x^2+x+1}+2=0\)

Đặt \(\sqrt{x^2+x+1}=t\) (Điều kiện: t lớn hơn hoặc bằng 0)

Ta có: \(t^2-3t+2=0\)

Giải phương trình trên ta có t=2 hoặc t=1 (thỏa mãn điều kiện)

*TH1: t=2 <=> \(\sqrt{x^2+x+1}=2\)<=> \(x^2+x+1=4\)<=> \(x=\frac{-1+\sqrt{13}}{2}\)hoặc \(x=\frac{-1-\sqrt{13}}{2}\)

*TH2: t=1 <=> \(\sqrt{x^2+x+1}=1\)<=> \(x^2+x+1=1\)<=>  x=-1 hoặc x=0

=> KL

22 tháng 9 2020

Ta có: \(x^2+x-3\sqrt{x^2+x+1}+3=0\)      \(\left(ĐK:x\inℝ\right)\)

    \(\Leftrightarrow4x^2+4x-12\sqrt{x^2+x+1}+12=0\)

    \(\Leftrightarrow\left[\left(4x^2+4x+4\right)-12\sqrt{x^2+x+1}+9\right]-1=0\)

    \(\Leftrightarrow\left[\left(2\sqrt{x^2+x+1}\right)^2-2.2\sqrt{x^2+x+1}.3+9\right]-1=0\)

    \(\Leftrightarrow\left(2\sqrt{x^2+x+1}-3\right)^2-1=0\)

    \(\Leftrightarrow\left(2\sqrt{x^2+x+1}-2\right).\left(2\sqrt{x^2+x+1}-4\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x^2+x+1}-2=0\\2\sqrt{x^2+x+1}-4=0\end{cases}}\)

    \(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x^2+x+1}=2\\2\sqrt{x^2+x+1}=4\end{cases}}\)

    \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+x+1}=1\\\sqrt{x^2+x+1}=2\end{cases}}\)

    \(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=1\\x^2+x+1=4\end{cases}}\)

\(x^2+x+1=1\)\(\Leftrightarrow\)\(x^2+x=0\)

                                       \(\Leftrightarrow\)\(x.\left(x+1\right)=0\)

                                       \(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)

\(x^2+x+1=4\)\(\Leftrightarrow\)\(x^2+x-3=0\)

                                       \(\Leftrightarrow\)\(\left(x^2+x+\frac{1}{4}\right)-\frac{13}{4}=0\)

                                       \(\Leftrightarrow\)\(\left(x-\frac{1}{2}\right)^2-\frac{13}{4}=0\)

                                       \(\Leftrightarrow\)\(x-\frac{1}{2}=\pm\frac{\sqrt{13}}{2}\)

                                       \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\left(TM\right)\\x=\frac{1-\sqrt{13}}{2}\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{\frac{1-\sqrt{13}}{2};-1;0;\frac{1+\sqrt{13}}{2}\right\}\)

13 tháng 1 2017

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

\(\Leftrightarrow\left(\sqrt[3]{x+1}+1\right)+\sqrt[3]{x+2}+\left(\sqrt[3]{x+3}-1\right)=0\)

\(\Leftrightarrow\frac{x+2}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{x+2}{\sqrt[3]{\left(x+2\right)^4}}+\frac{x+2}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\)(liên hợp tử mẫu)

\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^4}}+\frac{1}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\right)=0\)

\(\Leftrightarrow x+2=0\)( vì biểu thức thứ 2 luôn khác 0)

\(\Leftrightarrow x=-2\)

Vậy...

13 tháng 1 2017

\(\left(\sqrt[3]{x+1}+\sqrt[3]{x+3}\right)\left(LH\right)=\sqrt[3]{x+2}\left(LH\right)\)

\(\Leftrightarrow2\left(x+2\right)=\sqrt[3]{x+2}\left(Lh\right)\)

=> x=-2 la nghiệm

x khác -2

\(2\sqrt[3]{\left(x+2\right)^2}=-\left(LH\right)\) Vô nghiệm

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

25 tháng 5 2019

1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)

ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)

Kết hơp với ĐKXĐ=> \(4\le x\le5\)

Khi đó Phương trình tương đương

\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)

<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)

=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0

\(x^2-7x+11=0\)

Với \(4\le x\le5\)

\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)

25 tháng 5 2019

2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)

<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)

<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)

<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)

=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0

\(S=\left\{2;-1\right\}\)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

23 tháng 9 2016

ĐK: \(\hept{\begin{cases}\frac{1}{x^3+1}\ge0\\\frac{x^2-x+1}{x+1}\ge0\end{cases}\Leftrightarrow x+1>0\Leftrightarrow x>-1.}\)

Khi đó ta có: \(pt\Leftrightarrow\sqrt{\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)

\(\Leftrightarrow\sqrt{\frac{x+1}{x^2-x+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)

Đặt \(\sqrt{\frac{x+1}{x^2-x+1}}=a\left(a>0\right)\), ta có \(a-\frac{2}{a}+1=0\Leftrightarrow a^2+a-2=0\Rightarrow a=1.\)

Vậy \(\frac{x+1}{x^2-x+1}=1\Rightarrow x+1=x^2-x+1\Leftrightarrow x^2-2x=0\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}\left(tmđk\right)}\)

23 tháng 10 2016

cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn

3 tháng 8 2016

a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\)  \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)

 \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

S={-2}

 

3 tháng 8 2016

b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\) 

\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)

\(\Leftrightarrow1-x^2=x+1\)

\(\Leftrightarrow-x-x^2=0\)

\(\Leftrightarrow-x\left(1+x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\) 

S={-1;0}

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)