Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) đặt \(\sqrt{2x^2+x+9}=a\) và \(\sqrt{2x^2-x+1}=b\)
thì pt trên trở thành \(a+b=\frac{a^2-b^2}{2}\)
<=> \(a^2-b^2=2a+2b\)
<=> \(\left(a-b\right)\left(a+b\right)-2\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a-b-2\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a=b+2\end{cases}}\)
đến đây bạn thay vào rùi giải nốt nha
B) Đặt \(\sqrt{x-1}=a\) và \(\sqrt{x^3+x^2+x+1}=b\)
==> ab= \(\sqrt{x^4-1}\)
do đó pt trên trở thành \(a+b=ab+1\)
<=> \(\left(a-1\right)\left(1-b\right)=0\)
<=> \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
đến đây cũng thay vào nốt rùi giải tiếp nhé bạn
\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)
\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)
Vậy...
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có
\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)
Lấy (1) - (2) vế theo vế ta được
\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)
Với a = b
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)
\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)
Với a = 1
\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)
Với b = 1
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)
Vậy PT có nghiệm là x = 3
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)