Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(3\le x\le5\)
Áp dụng bất đẳng thức Bunhiacopxki vào vế trái :
\(\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-3+5-x\right)=4\)
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}\le2\)
Xét vế phải : \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)
Do đó pt tương đương với : \(\begin{cases}\sqrt{x-3}+\sqrt{5-x}=2\\x^2-4x+18=2\end{cases}\) \(\Leftrightarrow x=4\) (tmđk)
Vậy pt có nghiệm x = 4
b) ĐK \(3\le x\le5\)(*)
Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=4\)
Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)
Dấu "=" xảy ra <=> x=4
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)
Với x=4 thỏa mãn điều kiện (*)
Vậy nghiệm của phương trình là x=4
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)
Txđ: \(x\in[3;5]\)
Áp dụng BĐT : \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)Với \(a,b\ge0\)(Chứng minh cái này dễ thôi, bạn bình phương 2 vế là ra nhé)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}\le\sqrt{2(5-x+x-3)}\)\(=2\)
Mặt khác:
\(\frac{2x^2}{8x-16}=\frac{x^2}{4\left(x-2\right)}=\frac{[\left(x-2\right)+2]^2}{4\left(x-2\right)}=\frac{\left(x-2\right)^2+4\left(x-2\right)+4}{4\left(x-2\right)}=\frac{x-2}{4}+\frac{1}{x-2}+1\)
\(\ge2\sqrt{\frac{x-2}{4}.\frac{1}{x-2}}+1=2\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}5-x=x-3\\\frac{x-2}{4}=\frac{1}{x-2}\end{cases}}\)
=> \(x=4\)(Thỏa mãn Đ/K)
\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)
=>\(VT=< \sqrt{2}+\sqrt{3}\)
xảy ra dấu = khi và chỉ khi x=2
Ta có: \(\sqrt{x-3}.1\ge\frac{x-3+1}{2}=\frac{x-2}{2}\)\(\left(1\right)\)
\(\sqrt{5-x}.1\ge\frac{5-x+1}{2}=\frac{4-x}{2}\)\(\left(2\right)\)
Cộng \(\left(1\right),\left(2\right)\),ta có \(\sqrt{x-3}+\sqrt{5-x}\ge2\)
Mặt khác: \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x=4