\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)

<=> \(\sqrt{2x^2+5x-2}=1+\sqrt{2x^2+5x-9}\)(1)

ĐK : \(\orbr{\begin{cases}x\ge\frac{\sqrt{97}-5}{4}\\x\le\frac{-\sqrt{97}-5}{4}\end{cases}}\)

Đặt t = 2x2 + 5x - 2

(1) <=> \(\sqrt{t}=1+\sqrt{t-7}\)( t ≥ 7 )

Bình phương hai vế

<=> \(t=t+2\sqrt{t-7}-6\)

<=> \(t+2\sqrt{t-7}-t=6\)

<=> \(2\sqrt{t-7}=6\)

<=> \(\sqrt{t-7}=3\)

<=> t - 7 = 9

<=> t = 16 ( tm )

=> 2x2 + 5x - 2 = 16

<=> 2x2 + 5x - 2 - 16 = 0

<=> 2x2 + 5x - 18 = 0

<=> 2x2 - 4x + 9x - 18 = 0

<=> 2x( x - 2 ) + 9( x - 2 ) = 0

<=> ( x - 2 )( 2x + 9 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{9}{2}\end{cases}}\)( tm )

Vậy phương trình có hai nghiệm x1 = 2 ; x2 = -9/2

\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)

\(\Leftrightarrow\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-2-7}=1\)

Đặt : \(\sqrt{2x^2+5x-2}=t\)

\(\Leftrightarrow t-\sqrt{t^2-7}=1\)

Gải được t thế vào tìm được x =2 nha bạn

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

NV
17 tháng 10 2019

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=1\)

\(\Leftrightarrow\left|x-1\right|+\left|3-x\right|=1\)

\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2>1\)

\(\Rightarrow\) Phương trình vô nghiệm

2/ \(\Leftrightarrow\left(2x-3\right)\left(x^2-x+1\right)< 0\) (1)

Do \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\left(1\right)\Leftrightarrow2x-3< 0\)

\(\Rightarrow x< \frac{3}{2}\)

7 tháng 12 2016

làm được

7 tháng 12 2016

làm đi tôi xem nhờ với

NM
1 tháng 3 2021

ta có 

\(\left(5x^2+2x-1\right)-\left(2x-1\right)\sqrt{5x^2+2x-1}-\left(4x+2\right)=0\)

Đặt \(\sqrt{5x^2+2x-1}=a\ge0\Rightarrow a^2-\left(2x-1\right)a-\left(4a+2\right)=0\)

\(\Rightarrow\Delta=\left(2x-1\right)^2+4\left(4x+2\right)=4x^2+12x+9=\left(2x+3\right)^2\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{2x-1+2x+3}{2}=1\\a=\frac{2x-1-2x-3}{2}=-2\text{ (Loại)}\end{cases}\Rightarrow5x^2+2x-1=1\Rightarrow x=\frac{-1\pm\sqrt{11}}{5}}\)