K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

Sorry nha nhưng em mới học lớp 7 thôi à ~~

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

22 tháng 9 2016

Đk: \(\hept{\begin{cases}1-x\ge0\\x^2-3x+2\ge0\\\frac{x-1}{x-2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le1\vee x\ge2\\x\le1\vee x\ge2\end{cases}\Leftrightarrow x\le1.}\)

Khi đó \(x-1\le0\Rightarrow x-2\le-1< 0\)

Đặt \(\hept{\begin{cases}\sqrt{1-x}=a\\\sqrt{2-x}=b\end{cases}\Rightarrow\hept{\begin{cases}b^2-a^2=1\\a+ab+\frac{\left(-b^2\right)a}{b}=3\left(1\right)\end{cases}}}\)

Từ (1) \(a+ab-ab=3\Rightarrow a=3\)

\(\Rightarrow\sqrt{1-x}=3\Rightarrow1-x=9\Rightarrow x=-8.\)

8 tháng 5 2020

\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)

\(ĐK:x,y>0\)

\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\)

Vì x, y > 0 nên \(x+2y+\frac{1}{y\sqrt{x}}>0\)suy ra x - y = 0 hay x = y

Thay x = y vào (2), ta được: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)

\(\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\)

\(\Leftrightarrow\sqrt{x+3}.\sqrt{x}-\sqrt{x+3}-\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x+3}-1\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=1\left(tmđk\right)\end{cases}}\Rightarrow x=y=1\)

Vậy hệ có một nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

8 tháng 5 2020

\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)

ĐK: \(\hept{\begin{cases}x>0\\y>0\end{cases}}\)và \(\hept{\begin{cases}x+3\ge0\\x^2+3x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\y>0\end{cases}}}\)

\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x+y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\Leftrightarrow x=y\)do \(x+2y+\frac{1}{y\sqrt{x}}>0\forall x,y>0\)

Thay y=x vào pt (2) ta được

\(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)

\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\Leftrightarrow\sqrt{x+3}\cdot\sqrt{x}-\sqrt{x+3}-\sqrt{x+1}=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=1\left(tm\right)\end{cases}\Rightarrow}x=y=1}\)

Vậy hệ có nghiệm duy nhất (x;y)=(1;1)

20 tháng 8 2017

a)\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2}\)

ĐK:\(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}-\sqrt{3}=\sqrt{x+2}-\sqrt{3}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}=\frac{x+2-3}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x-2}{\sqrt{2x+1}+\sqrt{3}}=\frac{x-1}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3}}-\frac{x-1}{\sqrt{x+2}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x+1}+\frac{2}{\sqrt{2x+1}+\sqrt{3}}-\frac{1}{\sqrt{x+2}+\sqrt{3}}\right)=0\)

Suy ra x=1

b)\(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-4+\sqrt{3x+1}-\sqrt{\frac{5}{2}}=\frac{1}{x^2}-4+\sqrt{x+2}-\sqrt{\frac{5}{2}}\)

\(\Leftrightarrow\frac{4x^2-8x+3}{-x^2+2x-1}+\frac{3x+1-\frac{5}{2}}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}=\frac{-\left(4x^2-1\right)}{x^2}+\frac{x+2-\frac{5}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\)

\(\Leftrightarrow\frac{2\left(x-\frac{1}{2}\right)\left(2x-3\right)}{-x^2+2x-1}+\frac{6\left(x-\frac{1}{2}\right)}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(x-\frac{1}{2}\right)\left(2x+1\right)}{x^2}-\frac{x-\frac{1}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{2\left(2x-3\right)}{-x^2+2x-1}+\frac{6}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(2x+1\right)}{x^2}-\frac{1}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\right)=0\)

Suy ra x=1/2

20 tháng 8 2017

96 đặt\(\sqrt{x+7}+\sqrt{6-x}=a\)

=>\(a^2-13=2\sqrt{-x^2-x+42}\)

xong cậu thay vào pt là đc

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

27 tháng 7 2017

đặt ản phụ giải hệ pt

27 tháng 7 2017

là sao bạn giải đc ko