Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+6x-3=\sqrt{\frac{x+7}{3}}\)
\(\Leftrightarrow\left(3x^2+6x-3\right)^2=\left(\sqrt{\frac{x+7}{3}}\right)^2\)
\(\Leftrightarrow9x^4+36x^3+18x^2-36x+9=\frac{x+7}{3}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{69}+7}{6}\\x=\frac{\sqrt{73}-5}{6}\end{cases}}\)
Đặt : \(\sqrt{\frac{x+7}{3}}\)= t + 1
=> x+7/3 = t^2+2t+1
<=> x+7 = 3t^2+6t+3
<=> 3t^2+6t+3-x-7 = 0
<=> 3t^2+6t-x = 4
pt <=> 3x^2+6x-3 = t+1
<=>3x^2+6x-t = 1+3
<=> 3x^2+6x-t = 4
Từ đó ta có hệ pt đối xứng loại 2 :
3t^2+6t-x = 4
3x^2+6x-1 = 4
Đến đó bạn tự giải nha
Tk mk nha
À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
ĐK \(x\ge0\)
Pt
<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)
<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)
<=> \(4x\sqrt{x+1}=5x+9\)
<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)
<=> \(16x^3-9x^2-90x-81=0\)
<=> \(x=3\)(tm ĐK)
Vậy x=3
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.