K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(\frac{X+1}{99}+1+\frac{X+2}{98}+1+\frac{x+3}{97}+1+\frac{X+4}{96}+1=0\)

\(\Leftrightarrow\frac{x+100}{99}+\frac{X+100}{98}+\frac{X+100}{97}+\frac{X+100}{96}=0\Leftrightarrow\left(X+100\right)\times\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0 \)\(\Leftrightarrow X+100=0\Leftrightarrow x=-100\)

19 tháng 3 2018

Điều kiện: x khác (-3,-2,1,4)

PT <=> 

\(1+\frac{2}{x-1}+1-\frac{4}{x+2}+1-\frac{6}{x+3}+1+\frac{8}{x-4}=4\)

<=> \(\frac{1}{x-1}-\frac{2}{x+2}-\frac{3}{x+3}+\frac{4}{x-4}=0\)

<=> (x+2)(x+3)(x-4)-2(x-1)(x+3)(x-4)-3(x-1)(x+2)(x-4)+4(x-1)(x+2)(x+3)=0

<=> (x3+x2-14x-24)-2(x- 2x2-11x+12) - 3(x3 - 3x2- 6x+8) + 4(x3+4x2 + x-6) = 0

<=> x3+x2-14x-24-2x3 + 4x2+22x-24 - 3x3 + 9x2+ 18x-24 + 4x3+16x2 + 4x-24 = 0

<=> 30x2 + 30x -96=0

<=> 5x2 + 5x -16 = 0

Giải ra được: \(\orbr{\begin{cases}x_1=\frac{-5-\sqrt{345}}{10}\\x_2=\frac{-5+\sqrt{345}}{10}\end{cases}}\)

27 tháng 6 2016

Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)

=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)

<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)

<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)

<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)

<=>\(x+1>\frac{60}{43}\)

<=> x>\(\frac{17}{43}\)

Vậy x>17/43

3 tháng 6 2016

\(\frac{x+1}{97}\) + \(\frac{x+1}{98}\) - \(\frac{x+1}{99}\) - \(\frac{x+1}{100}\) \(\Leftrightarrow\) (x+1).(1/97 + 1/98 - 1/99 - 1/100) . Vì (1/97 = 1/ 98 - 1/99 - 1/100) \(\ne\) 0 \(\Rightarrow\) x+ 1= 0 \(\Leftrightarrow\) x= -1

26 tháng 10 2015

Đặt 2x = t thì 4x = t2. Giải pt ẩn t (t>0)

6 tháng 8 2016

\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)

\(=-1+\sqrt{100}\)

\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)

\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)

27 tháng 6 2016

cho tam giác abc vuông tại a và đường cao ah =12cm, ch = 5cm. tính sin b sin c

ai giải giúp mình bài toán này với mk đang cần rất gấp

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

9 tháng 9 2016

a)x=-0.25

b)x=2

8 tháng 10 2018

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\) (*) (ĐKXĐ: \(\forall x\in R\))

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+\left(2x+1\right)\right]\)

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

+) Xét \(x+\frac{1}{2}\ge0\Leftrightarrow x\ge-\frac{1}{2}\). Khi đó pt (*) trở thành:

\(\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\) (Do \(x\ge\frac{1}{2}\))

\(\Leftrightarrow\frac{\left(2x+1\right)\left(x^2+1\right)-\left(2x+1\right)}{2}=0\)

\(\Leftrightarrow x^2\left(2x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\) (t/m ĐKXĐ)

+) Xét \(x+\frac{1}{2}< 0\Leftrightarrow x< -\frac{1}{2}\). Khi đó: \(2x+1< 0\)

Ta thấy: \(2x+1< 0;x^2+1>0;\frac{1}{2}>0\Rightarrow\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)< 0\)

Mà \(\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}\ge0\) nên Vô lí ---> Loại TH này.

Vậy tập nghiệm của pt (*) là \(S=\left\{0;-\frac{1}{2}\right\}.\)

rthgsdgdh olweikehgf