K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

x(3x-1)-6x+2=0

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

9 tháng 10 2020

\(pt\Leftrightarrow\sqrt{\left(x^4-9\right)+\left(x^3-3x\right)}+\sqrt{\left(x^4-9\right)+\left(2x^3-6x\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{\left(x^2-3\right)\left(x^2+x+3\right)}+\sqrt{\left(x^2-3\right)\left(x^2+2x+3\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(\sqrt{x^2+x+3}+\sqrt{x^2+2x+3}+1\right)=0\)

\(\text{Nếu }x=\pm\sqrt{3}\Rightarrow\text{thỏa mãn còn lại thì thừa số số 2}>0\text{ nên không thỏa}\)

16 tháng 3 2017

\(\left(2x-4\right)^3+\left(x-5\right)^3=\left(3x-9\right)^3\)

Đặt \(\hept{\begin{cases}2x-4=u\\x-5=v\end{cases}}\)thì ta có 

\(u^3+v^3=\left(u+v\right)^3\)

 \(\Leftrightarrow u^2v+uv^2=0\)

\(\Leftrightarrow uv\left(u+v\right)=0\)

Với \(\Leftrightarrow\hept{\begin{cases}u=0\\v=0\\u=-v\end{cases}}\) (không có ký hiệu hoặc 3 cái nên dùng tạm cái này)

\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\x-5=0\\2x-4=-x+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\x=5\\x=3\end{cases}}\) 

16 tháng 3 2017

Đặt 2x-4=a (1)

x-5=b (2)

3x-9=c (3)

Từ (1),(2),(3) --->a+b+c=0

Mặt khác : nếu a+b+c=0 --->a3+b3+c3=3abc (*)

Từ (*)--->(2x-4)3+(x-5)3-(3x-9)3=3(2x-4)(x-5)(3x-9)=0

---> x=2;x=5;x=3

17 tháng 7 2017

\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)

\(\Leftrightarrow\sqrt{x^2+9}=\frac{3x^2+2x+30}{2\left(3x+5\right)}\)

\(\Leftrightarrow\sqrt{x^2+9}-3=\frac{3x^2+2x+30}{2\left(3x+5\right)}-3\)

\(\Leftrightarrow\frac{x^2+9-9}{\sqrt{x^2+9}+3}-\frac{3x^2-16x}{6x+10}=0\)

\(\Leftrightarrow\frac{x^2}{\sqrt{x^2+9}+3}-\frac{x\left(3x-16\right)}{6x+10}=0\)

\(\Leftrightarrow x\left(\frac{x}{\sqrt{x^2+9}+3}-\frac{3x-16}{6x+10}\right)=0\)

Pt trong ngoặc vô nghiệm suy ra x=0

a, đề sai:)

b, \(x^3-3x^3+2x=0\Leftrightarrow-2x^3+2x=0\)

\(\Leftrightarrow-2x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

15 tháng 8 2020

| - 3x + 7 | = 5 - x

<=> - 3x + 7 = 5 - x hoặc - 3x + 7 = - 5 + x

<=> - 3x + x = 5 - 7 hoặc - 3x - x = - 5 - 7

<=> - 2x = - 2 hoặc - 4x = - 12

<=> x = 1 hoặc x = 3

\(x^3-3x^3+2x=0\)

\(\Leftrightarrow-2x\left(x-1\right)\left(x+1\right)=0\)

<=> - 2x = 0 ; x - 1 = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 1 hoặc x = - 1

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

28 tháng 2 2020

\(\left\{{}\begin{matrix}\frac{3x}{x+1}+\frac{2}{y+4}=4\\\frac{2x}{x+1}-\frac{5}{y+4}=9\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\frac{x}{x+1}\\b=\frac{1}{y+4}\end{matrix}\right.\)

Thay a và b vào hệ phương trình ta có:

\(\left\{{}\begin{matrix}3a+2b=4\\2a-5b=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6a+4b=8\\6a-15b=27\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19b=-19\\3a+2b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\3a+2.\left(-1\right)=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Ta có:

\(a=\frac{x}{x+1}=2\Leftrightarrow x=2\left(x+1\right)\)

<=> x=2x+2

<=> x=-2

\(b=\frac{1}{y+4}=-1\Leftrightarrow y+4=-1\Leftrightarrow y=-5\)

Vậy hệ phương trình có nghiệm \(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

16 tháng 11 2016

x=-2

y=-5