K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

ĐKXĐ: \(x\ge-\dfrac{1}{4}\)

\(\Leftrightarrow4x^2+4x+2=2\sqrt{4x+1}\)

\(\Leftrightarrow4x^2+\left(4x+1-2\sqrt{4x+1}+1\right)=0\)

\(\Leftrightarrow\left(2x\right)^2+\left(\sqrt{4x+1}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\\sqrt{4x+1}-1=0\end{matrix}\right.\) \(\Leftrightarrow x=0\)

16 tháng 8 2020

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

16 tháng 8 2020

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>

19 tháng 6 2019

ĐKXĐ \(x\ge\frac{1}{2}\)

Đặt \(\sqrt{x^2+2x}=a,\sqrt{2x-1}=b\left(a,b\ge0\right)\)

=> \(3a^2-b^2=3x^2+4x+1\)

Khi đó PT <=> 

\(a+b=\sqrt{3a^2-b^2}\)

=> \(a^2+2ab+b^2=3a^2-b^2\)

=> \(a^2-ab-b^2=0\)

=> \(a=\frac{1+\sqrt{5}}{2}.b\)

=> \(x^2+2x=\frac{6+2\sqrt{5}}{4}.\left(2x-1\right)\)

=> \(x=\frac{1+\sqrt{5}}{2}\)thỏa mãn ĐKXĐ

Vậy \(x=\frac{1+\sqrt{5}}{2}\)

13 tháng 10 2017

mk ko bt vào học cộng đồng 24h nhé !

13 tháng 10 2017

ta có: \(2x^2+2x+1=\sqrt{4x^2+1}.\)

\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x^2+1}=0\)

\(\Leftrightarrow4x^2+1-2\sqrt{4x^2+1}+1=-4x\)

\(\Leftrightarrow\left(\sqrt{4x^2+1}-1\right)^2=-4x\)

mà \(VT\ge0\) với mọi x  => VP\(\ge0\) với mọi x

=>x=0

4 tháng 6 2019

Bình phương cả 2 vế rồi đặt ẩn phụ là ra

5 tháng 6 2019

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))

\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)

\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)

\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)

Đặt \(x^2+1=t\)

pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)

\(\Leftrightarrow2xt+3t-4x-3=t^2\)

\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)

\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)

\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)

TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)

\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)

\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)

\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)

Giải ra rồi thay TH2

20 tháng 2 2020

\(pt\Leftrightarrow3x\left(2+\sqrt{\left(3x\right)^2+3}\right)=-\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)\)

Nếu 3x = - (2x + 1)\(\Leftrightarrow x=-\frac{1}{5}\)thì các biểu thức trong căn của hai vế bằng nhau.Vậy \(x=-\frac{1}{5}\)là 1 nghiệm của phương trình.

Hơn nữa, nghiệm của pt nằm trong khoảng \(\left(\frac{-1}{2};0\right)\).Ta chứng minh đó là nghiệm duy nhất.

Với \(-\frac{1}{2}< x< -\frac{1}{5}:3x< -2x-1< 0\)

\(\Rightarrow\left(3x\right)^2>\left(2x+1\right)^2\)\(\Rightarrow2+\sqrt{\left(3x\right)^2+3}>2+\sqrt{\left(2x+1\right)^2+3}\)

Suy ra \(3x\left(2+\sqrt{\left(3x\right)^2+3}\right)+\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)>0\)pt không có nghiệm nằm trong khoảng này.CMTT: ta cũng đi đến kết luận pt không có nghiệm khi \(-\frac{1}{2}< x< -\frac{1}{5}\)

Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{5}\)

11 tháng 5 2020

PT tương đương 

\(\left(2x+1\right)\left(2+\sqrt{\left(2x+1\right)^2+3}\right)=-3x\left(2+\sqrt{\left(-3x\right)^2+3}\right)\)

\(\Leftrightarrow f\left(2x+1\right)=f\left(-3x\right)\)

Trong đó \(f\left(t\right)=t\left(2+\sqrt{t^2+3}\right)\)là hàm đồng biến và liên tục trong R. Phương trình trở thành

\(f\left(2x+1\right)=f\left(-3x\right)\Leftrightarrow2x+1=-3x\Leftrightarrow x=\frac{-1}{5}\)là nghiệm duy nhất

26 tháng 1 2020

\(ĐKXĐ:x\ge-\frac{1}{2}\)

Đặt: \(\sqrt{2x+1}=a\left(a\ge0\right)\)và \(\sqrt{4x^2-2x+1}=b\left(b>0\right)\)

Phương trình đã cho được viết dưới dạng:

\(a+3b=3+ab\Leftrightarrow\left(1-b\right)\left(a-3\right)=0\)

  • \(b=1\Rightarrow\sqrt{4x^2-2x+1}=1\Leftrightarrow4x^2-2x=0\)

\(\Leftrightarrow2x\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)

  • \(a=3\Rightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\)

\(\Leftrightarrow x=4\left(tmđk\right)\)

Vậy phương trình có \(n_0S=\left\{0;\frac{1}{2};4\right\}\)