Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
\(ĐK:x\ge2\)
\(x^2-5x+4=2\sqrt{2x-4}\)
<=>\(x^2-5x+4=2\sqrt{2\left(x-2\right)}\)
<=>\(x^2-5x+4+x-2+2=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)
<=>\(x^2-4x+4=\left(\sqrt{x-2}+2\right)^2\)
<=>\(\left(x-2\right)^2=\left(\sqrt{x-2}+2\right)^2\)
<=> \(\left(x-2-\sqrt{x-2}-2\right)\left(x-2+\sqrt{x-2}+2\right)=0\)
<=>\(\left(x-\sqrt{x-2}-4\right)\left(x+\sqrt{x-2}\right)=0\)
Xét \(x-\sqrt{x-2}-4=0\)
<=>\(x^2-8x+16=x-2\)
<=>\(x^2-9x+18=0\)
=> x=6;3(nhận)
Xet1\(x+\sqrt{x-2}=0\)
Do x\(\ge2\)=> pt vô nghiệm
Vậy ...
giai phuong trinh
\(\sqrt{x}-5+\dfrac{1}{3}\sqrt{9x}-45=\dfrac{1}{5}\sqrt{25x}-125=6\)
giup minh voi
Sửa đề: \(\sqrt{x-5}+\dfrac{1}{3}\sqrt{9x-45}=\dfrac{1}{5}\sqrt{25x-125}+6\)
\(\Leftrightarrow\sqrt{x-5}+\dfrac{1}{3}\cdot3\cdot\sqrt{x-5}-\dfrac{1}{5}\cdot5\sqrt{x-5}=6\)
\(\Leftrightarrow\sqrt{x-5}=6\)
=>x-5=36
hay x=41
ĐKXĐ : \(-4\le x\le4\)
TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)
\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)
\(\Leftrightarrow x=0\)HOẶC \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)
\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)
\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)
\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)
\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)
\(\Leftrightarrow25x^2+64+80x=64-16x\)
\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)
\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )
VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)
P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>
Đặt \(\sqrt{x^2+3}=a\ge\sqrt{3}\) (1)
pt \(\Leftrightarrow\left(a^2-3\right)^2+a-3=0\)
\(\Leftrightarrow a^4+9-6a^2+a-3=0\)
\(\Leftrightarrow a^4-4a^2-2a^2+4a-3a+6=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2-2a-3=0\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a^3+a^2+a^2+a-3a-3\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left(a^2+a-3\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left[\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}a-2=0\\a+1=0\\\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(c\right)\\a=-1\left(l\right)\\a=\dfrac{-1+\sqrt{13}}{2}\left(l\right)\\a=\dfrac{-1-\sqrt{13}}{2}\left(l\right)\end{matrix}\right.\)
Thay a = 2 vào (1) ta được: \(\sqrt{x^2+3}=2\Rightarrow x^2+3=4\)
\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?