Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x3 - 15x2 + 26x - 5 = 0
<=> 2x3 - 10x2 - 5x2 + 25x + x - 5 = 0
<=> 2x2( x - 5 ) - 5x( x - 5 ) + ( x - 5 ) = 0
<=> ( x - 5 )( 2x2 - 5x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-5=0\\2x^2-5x+1=0\end{cases}}\)
+) x - 5 = 0 <=> x = 5
+) 2x2 - 5x + 1 = 0
Δ = b2 - 4ac = (-5)2 - 4.2.1 = 25 - 8 = 17
Δ > 0, áp dụng công thức nghiệm thu được \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4}\)
Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4};x_3=5\)
x4-30x2+31x-30=0
x4+x) -30x2+30x-30=0
x{x3+1} -30{ x2-x+1}=0
x{x+1}{x2-x+1}-30{x2-x+1}=0
{x2-x+1}{x2+x-30}=0
x2+x-30=0 {vi x2-x+1>0}
x2+x-30x-30=0
{x+1}{x-30}=0
- x=-1
- x=30
\(x^2-15x-6\sqrt{x-1}+74=0\)
\(\Leftrightarrow\left(\left(x-1\right)-6\sqrt{x-1}+9\right)+\left(x^2-16x+64\right)+2=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-3\right)^2+\left(x-8\right)^2+2=0\)
Ta có VT > 0; VP = 0 nên pt vô nghiệm
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a/ ĐKXĐ:...
\(9x-6\sqrt{x}+1+4x-4\sqrt{x}y+y^2=0\)
\(\Leftrightarrow\left(3\sqrt{x}-1\right)^2+\left(2\sqrt{x}-y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}-1=0\\2\sqrt{x}-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{9}\\y=\frac{2}{3}\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)
\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}-\frac{4\left(x-1\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
\(\Rightarrow x=1\)
c/ ĐKXĐ:...
\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Rightarrow x+4+1-x-2\sqrt{\left(x+4\right)\left(1-x\right)}=1-2x\)
\(\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=x+2\) (\(x\ge-2\))
\(\Rightarrow-x^2-3x+4=x^2+4x+4\)
\(\Rightarrow2x^2+7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{7}{2}\left(l\right)\end{matrix}\right.\)
1. phương trình tương đương với \(\left(x^2-7x+2\right)\left(x^2+2x+2\right)=0\to x=\frac{7}{2}\pm\frac{\sqrt{41}}{2}\)
2. phương trình tương đương với \(\left(x^2+\left(\sqrt{2}-1\right)x+1\right)\left(x^2+\left(\sqrt{2}+1\right)x-1\right)=0\to x=\frac{-1\pm\sqrt{2}\pm\sqrt{7-2\sqrt{2}}}{2}\) với dấu +,- lấy tuỳ ý
\(15x^4+30x^3+13x^2-2x-1=0\)
<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)
<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)
<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)
<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)
Em tự giải tiếp nhé!