Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
ĐKXĐ:....
\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)
\(\Rightarrow4-\sqrt{1-x}=2-x\)
\(\Rightarrow\sqrt{1-x}=2+x\)
\(\Rightarrow1-x=4+4x+x^2\)
\(\Rightarrow1-x-4-4-x^2=0\)
\(\Rightarrow x^2+x+7=0\)
Đến đây dễ rồi làm nốt nha bạn !
ĐKXĐ:....
\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x=2−x
\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x=2−x
\Rightarrow\sqrt{1-x}=2+x⇒1−x=2+x
\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2
\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0
\Rightarrow x^2+x+7=0⇒x2+x+7=0
Đến đây dễ rồi làm nốt nha bạn !
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
Lời giải:
a) ĐK: $x\geq -2$
PT \(\Leftrightarrow \sqrt{(x+2)-4\sqrt{x+2}+4}+\sqrt{(x+2)-6\sqrt{x+2}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+2}-2)^2}+\sqrt{(\sqrt{x+2}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+2}-2|+|\sqrt{x+2}-3|=1\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|\sqrt{x+2}-2|+|\sqrt{x+2}-3|=|\sqrt{x+2}-2|+|3-\sqrt{x+2}|\)
\(\geq |\sqrt{x+2}-2+3-\sqrt{x+2}|=1\)
Dấu "=" xảy ra khi $(\sqrt{x+2}-2)(3-\sqrt{x+2})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x+2}\geq 2$
$\Leftrightarrow 7\geq x\geq 2$
Vậy.........
b)
ĐK: $x\geq \frac{5}{2}$
PT $\Leftrightarrow \sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14$
$\Leftrightarrow \sqrt{(2x-5)+2\sqrt{2x-5}+1}+\sqrt{(2x-5)+6\sqrt{2x-5}+9}=14$
$\Leftrightarrow \sqrt{(\sqrt{2x-5}+1)^2}+\sqrt{(\sqrt{2x-5}+3)^2}=14$
$\Leftrightarrow \sqrt{2x-5}+1+\sqrt{2x-5}+3=14$
$\Leftrightarrow \sqrt{2x-5}=5$
$\Rightarrow x=15$ (tm)
a. ĐK: x > 1 (gộp 2 điều kiện là biểu thức dưới 2 căn >0)
x - 2\(\sqrt{x-1}\) = 4 <=> x-4 = 2\(\sqrt{x-1}\)<=> (x-4)2 = 4(x-1) <=> x2-12x+20 = 0 <=> x= 2 và x =10 (thỏa mãn đk)
Đáp số: x = 2 và x = 10
b. ĐK: x > 2 (gộp 3 điều kiện)
Nhận xét biểu thức dưới căn là 1 hằng đẳng thức dạng a2-4a+4 và a2+4a+4. Sau đó sẽ làm mất căn. Lúc này bạn có thể tự giải.
Đáp số: Vô nghiệm
c. ĐK: -3\(\le\)x\(\le\)5.
Bình phương lần 1 trừ và chia 2 cho 2 vế được: \(\sqrt{x+3}\sqrt{5-x}=124\)
Bình phương lần 2 được: -x2+2x+15=15376 và giải như thường (chú ý loại nghiệm theo điều kiện)
Có vẻ đề toán ghi sai nên kết quả hơi đáng ngờ nhá