Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mạn phép sửa đề :
x4 - 3x3 + 4x2 - 3x + 1 = 0
⇔ x4 - x3 - 2x3 + 2x2 + 2x2 - 2x - x + 1 = 0
⇔ x3( x - 1) - 2x2( x - 1) + 2x( x - 1) - ( x - 1) = 0
⇔ ( x - 1)( x3 - 2x2 + 2x - 1) = 0
⇔ ( x - 1)[ ( x - 1)(x2 + x + 1) - 2x( x - 1)] = 0
⇔ ( x - 1)2( x2 - x + 1) = 0
Do : x2 - x + 1 \(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\text{≥}\dfrac{3}{4}>0\text{∀}x\)
⇔ ( x - 1)2 = 0
⇔ x = 1
Vậy,....
b) 6x4 - x3 - 7x2 + x + 1 = 0
⇔ 6x4 + 6x3 - 7x3 - 7x2 + x + 1 = 0
⇔ 6x3( x + 1) - 7x2( x + 1) + x + 1 = 0
⇔ ( x + 1)( 6x3 - 7x2 + 1 ) = 0
⇔ ( x + 1)( 6x3 - 6x2 - x2 + 1 ) = 0
⇔ ( x + 1)[ 6x2( x - 1) -( x + 1)( x - 1)] = 0
⇔ ( x + 1)2( 6x2 - x - 1) = 0
⇔ ( x + 1)2( 6x2 - 3x + 2x - 1) = 0
⇔( x + 1)2[ 3x( 2x - 1) + 2x - 1] = 0
⇔( x + 1)2( 2x - 1)( 3x + 1) = 0
⇔ x = -1 ; x = \(\dfrac{1}{2}\) hoặc : x = \(\dfrac{-1}{3}\)
Vậy,....
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)
\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)
\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
chúc bạn học tốt!
\(j,3x^2+7x+2=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy...............................
\(m,3x^2+4x-4=0\)
\(\Leftrightarrow3x^2+6x-2x-4=0\)
\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1