Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x-12=0\\ \Rightarrow\left(x^2+4x\right)-\left(3x+12\right)=0\\ \Rightarrow x\left(x+4\right)-3\left(x+4\right)=0\\ \Rightarrow\left(x-3\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Ta có: a) (x-1)(x2+5x-2)-(x3-1)=0
<=> (x-1) = 0
(x2+5x-2) = 0
(x3-1) = 0
=> x = 1
x = -5
x= 1
a)(x-1)(x2+5x-2)-(x3-1)=0
<=>4x2-7x+3
<=>(x-1)(4x-3)=0
<=>x-1=0 hoặc 4x-3=0
<=>x=1 hoặc x=\(\frac{3}{4}\)
b) x2+(x+2)(11x-7)=4
<=>12x2+15x-14=4
<=>12x2+14x-18=0
<=>3(4x2+5x-6)=0
<=>4x2+5x-6=0
<=>(x+2)(4x-3)=0
<=>x+2=0 hoặc 4x-3=0
<=>x=-2 hoặc x=\(\frac{3}{4}\)
c)x3+1=x(x+1)
<=>x3+1-x(x+1)=0
<=>(x-1)2(x+1)=0
<=>(x-1)2=0 hoặc x+1=0
<=>x=1 hoặc -1
d) x3+x2+x+1=0
mk gõ mỏi tay rùi bạn tự làm nốt nhé
x=-1
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(3x\left(25x+15\right)-35\left(5x+3\right)=0\\ \Leftrightarrow75x^2+45x-175x-105=0\\\Leftrightarrow 75x^2-130x-105=0\\\Leftrightarrow 75\left(x^2-\frac{26}{15}x-\frac{7}{5}\right)=0\\\Leftrightarrow x^2-\frac{26}{15}x-\frac{7}{5}=0\\\Leftrightarrow x^2+\frac{3}{5}x-\frac{7}{3}x-\frac{7}{5}=0\\\Leftrightarrow \left(x+\frac{3}{5}\right)\left(x-\frac{7}{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{5}=0\\x-\frac{7}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=\frac{7}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-\frac{3}{5};\frac{7}{3}\right\}\)
\(1.\left(5x+1\right)^2=\left(3x-2\right)^2\\ \Leftrightarrow\left(5x+1\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(5x+1-3x+2\right)\left(5x+1+3x-2\right)=0\\\Leftrightarrow \left(2x+3\right)\left(8x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}2x+3=0\\8x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{1}{8}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-\frac{2}{3};\frac{1}{8}\right\}\)