Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
7/
ĐKXĐ: \(-3\le x\le\frac{2}{3}\)
\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)
\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)
\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)
Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)
\(\Rightarrow4-\sqrt{3-2x}>0\)
\(\Rightarrow VT>0\)
Phương trình vô nghiệm (bạn coi lại đề)
5/
\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
6/
ĐKXĐ: ....
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)
a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b/ \(\Delta=9+8=17\)
Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)
c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)
d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)