K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, <=> (x-1)^3 + x^2(x-1)=0

<=> (x-1)(x^2-2x+1+x^2)=0

<=> (x-1)(2x^2-2x+1)=0

=> x=1

2x^2-2x+1=0 (*)

giải (*):

2x^2-2x+1=0

<=> (x-1)^2 + x^2 > 0

=> * vô nghiệm

=> Pt có nghiệm là 1.

b, x^2+x-12=0

<=> (x-3)(x+4)=0

=> x=3 hoặc x = -4

vậy....

c, 6x^2-11x-10=0

<=> (x-5/2)(6x+4)=0

=> x=5/2 hoặc x= -2/3.

vậy...

19 tháng 3 2020

a, x2-2x+1

= (x-1)2

19 tháng 3 2020

c, x+x4=0

=>x(x+3)=0

=>x=0 hoặc x+3=0

=>x=0 hoặc x = -3

25 tháng 2 2018

@Akai Haruma

25 tháng 2 2018

@soyeon_Tiểubàng giải

12 tháng 2 2019

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(a=x^2+x\)

\(\Leftrightarrow a^2+4a=12\)

\(\Leftrightarrow a^2+4a-12=0\)

\(\Leftrightarrow a^2+6a-2a-12=0\)

\(\Leftrightarrow a\left(a+6\right)-2\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-6\\a=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x=-6\\x^2+x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{23}{4}=0\\x^2+2x-x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\\\left(x+2\right)\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy....

2 tháng 3 2019

a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)

b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)

c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)

a: Sửa đề: \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1-4\right)-16=0\)

\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1\right)-4=0\)

\(\Leftrightarrow\left(2x^2-3x-1-4\right)\left(2x^2-3x-1+1\right)=0\)

\(\Leftrightarrow\left(2x^2-3x-5\right)\left(2x^2-3x\right)=0\)

\(\Leftrightarrow\left(2x^2-5x+2x-5\right)\cdot x\cdot\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)x\left(2x-3\right)=0\)

hay \(x\in\left\{\dfrac{5}{2};-1;0;\dfrac{3}{2}\right\}\)

b: \(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

hay \(x\in\left\{-2;1\right\}\)

16 tháng 2 2019

a) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\)( vì x2+1 khác 0 vs mọi x )

<=> x = -1

Vậy phương trình có tập nghiệm S = { - 1 }

b) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow x+1=0\) ( vì \(2x^2+x+5\ne0\) vs mọi x )

<=> x = -1

Vậy phương trình có tập nghiệm S = { - 1 }

c) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)+24=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)+24=0\)

\(\Leftrightarrow\left(x+1\right)^22x+24=0\Leftrightarrow2x\left(x^2+2x+1\right)+24=0\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2\left(x+3\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow x+3=0\) ( vì \(x^2-x+3\ne0\) với mọi x )

<=> x = -3

Vậy phương trình có tập nghiệm S = { - 3 }

16 tháng 2 2019

\(x^3^{ }+x^2+x+1\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)\)

9 tháng 3 2021

a) pt <=> ( x - 1 )3 + x2( x - 1 ) = 0

<=> ( x - 1 )[ ( x - 1 )2 + x2 ] = 0

<=> x = 1

Vậy pt có nghiệm x = 1

b) x2 + x - 12 = 0

<=> x2 - 3x + 4x - 12 = 0

<=> x( x - 3 ) + 4( x - 3 ) = 0

<=> ( x - 3 )( x + 4 ) = 0

<=> x = 3 hoặc x = -4

Vậy S = { 3 ; -4 }

c) x + x4 = 0

<=> x( x3 + 1 ) = 0

<=> x( x + 1 )( x2 - x + 1 ) = 0

<=> x = 0 hoặc x = -1

Vậy S = { 0 ; -1 }

9 tháng 3 2021

a,\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)^3+x^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2+x^2\right]=0\)

\(\Leftrightarrow x=1\)

10 tháng 3 2019

\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)

\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)

Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)

Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)

V...\(S=\varnothing\)

\(b.4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)

\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)

\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

V...\(S=\left\{2;3\right\}\)

^^ đúng ko ta

29 tháng 12 2019

a) (x+1)(x+2)(x+5)(x+6)-60=0

[(x+1)(x+6)][(x+2)(x+5)]-60=0

(x^2 + 7x + 6)(x^2  + 7x + 10) - 60 = 0

đặt t = x^2 + 7x + 8

pt trở thành

(t-2)(t+2)-60=0

t^2 - 64=0 .....

t=8 hoặc t=-8.

tìm x ....

6 tháng 4 2020

a) \(2x^3+5x^2-3x=0\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

b) \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^3+5x^2-3x=0\)

Vậy $\orpt{\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}}$ (Giải câu a)

c) \(x^3-12=13x\Leftrightarrow x^3-13x-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-12\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}\right.\)

Vậy $\orpt{\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}}$

d) \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)