\(tanx=\dfrac{1}{\sqrt{3}}\)

b) tan(30 độ - 3x) = tan75...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: tan x=1/căn 3

=>tan x=tan(pi/6)

=>x=pi/6+kpi

b: tan(30-3x)=tan75

=>30-3x=75+k*180

=>3x=-45-k*180

=>x=-15-k*60

c: \(cot3x=cot\left(\dfrac{3}{4}pi\right)\)

=>3x=3/4pi+kpi

=>x=1/4pi+kpi/3

d: cot(5x+30 độ)=cot 75 độ

=>5x+30=75+k*180

=>5x=45+k*180

=>x=9+k*36

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

31 tháng 3 2017

Bài 5. a) Vì = tan 300 nên

tan (x - 150) = ⇔ tan (x - 150) = tan 300

⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).

b) Vì -√3 = cot() nên

cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()

⇔ 3x - 1 = + kπ ⇔ x =

c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành

. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .

Vì vậy phương trình đã cho tương đương với

d) sin 3x . cot x = 0 ⇔ .

Với điều kiện sinx # 0, phương trình tương đương với

sin 3x . cot x = 0 ⇔

Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.

Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có

sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.

Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).

8 tháng 9 2016

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

8 tháng 9 2016

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)

3 tháng 4 2017

a) Ta có:

sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin⁡(x+1)=23⇔[x+1=arcsin⁡23+k2πx+1=π−arcsin⁡23+k2π⇔[x=−1+arcsin⁡23+k2πx=−1+π−arcsin⁡23+k2π;k∈Z

b) Ta có:

sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos⁡4x2=12⇔cos⁡4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z

c) Ta có:

cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cot⁡x2=33(1)cot⁡x2=−33(2)(1)⇔cot⁡x2=cot⁡π3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cot⁡x2=cot⁡(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z

d) Ta có:

tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z

Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z


22 tháng 5 2017

a)
\(sin\left(x+1\right)=\dfrac{2}{3}\Leftrightarrow\left[{}\begin{matrix}x+1=arcsin\dfrac{2}{3}+k2\pi\\x+1=\pi-arcsin\dfrac{2}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\dfrac{2}{3}-1+k2\pi\\x=\pi-arcsin\dfrac{2}{3}-1+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\).

NV
20 tháng 7 2020

a/

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)

\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)

\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)

\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)

\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)

hay k=-7/10(vô lý)

b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)