Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
\(giải:\)
\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)
\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)
\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)
\(\Leftrightarrow\frac{12x+20}{15}=0\)
\(\Rightarrow12x+20=0\)
\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)
vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)
\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)
\(mà\)\(x^2+10x+16>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
vậy x=4 là nghiệm của phương trình
\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)
\(\Leftrightarrow8x-16=0\)
\(\Leftrightarrow8\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
vậy x=2 là nghiệm của phương trình
\(a)\) \(3-2x>4x+5\)
\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)
\(\Leftrightarrow\)\(6x+5< 3\)
\(\Leftrightarrow\)\(6x+5-5< 3-5\)
\(\Leftrightarrow\)\(6x< -2\)
\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)
\(\Leftrightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x< \frac{-1}{3}\)
Chúc bạn học tốt ~
\(a.\)\(\frac{13x-16}{15}+\frac{x-32}{35}< \frac{x-6}{21}\)\(MC:105\)
\(\Leftrightarrow\frac{7\left(13x-16\right)}{105}+\frac{3\left(x-2\right)}{105}< \frac{5\left(x-6\right)}{105}\)
\(\text{Khử mẫu ta dc pt tương đương vs pt:}\)
\(\Leftrightarrow7\left(13x-16\right)+3\left(x-2\right)< 5\left(x-6\right)\)
\(\Leftrightarrow91x-112+3x-6< 5x-30\)
\(\Leftrightarrow94x-118< 5x-30\)
\(\Leftrightarrow94x-5x< 118-30\)
\(\Leftrightarrow89x< 88\)
\(\Leftrightarrow x< \frac{88}{89}\)
.\(b.\)\(\frac{5x+12}{14}+\frac{11x+28}{3}>\frac{4x+9}{17}\)\(MC:714\)
\(\text{Khi khử mẫu pt ta dc pt tương đương}:\):
\(\Leftrightarrow51\left(5x+12\right)+238\left(11x+28\right)>42\left(4x+9\right)\)
\(\Leftrightarrow255x+612+2618x+6664>168x+378\)
\(\Leftrightarrow2873x+7276>168x+378\)
\(\Leftrightarrow2873x-168x>-7276+378\)
\(\Leftrightarrow2705x>-6898\)
\(\Leftrightarrow x>-\frac{6898}{2705}\)
a)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)
\(\frac{3x}{15}+\frac{10x+5}{15}=\frac{x-5}{15}\)
\(3x+10x+5=x-5\)
\(13x+5-x+5=0\)
\(12x=-10\)
\(x=-\frac{5}{6}\)
a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}
a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)
\(\Leftrightarrow0x=0\)(vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
b) ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\)
\(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\)
\(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
<=> \(9-6x>10-5x\)
<=> 9 - 10 > -5x + 6x
<=> x < -1
Vậy nghiệm của bất phương trình là x < -1
b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
<=> \(x-1-2x+2\le3x\)
<=> \(-x+1\le3x\)
<=> \(1\le2x\)
<=> x \(\ge\frac{1}{2}\)
Vậy nghiệm của bất phương trình là x > = 1/2
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
<=> 2x + 1 > 2x - 13
<=> 1 > -13 (luôn đúng)
Vậy nghiệm của bất phương trình luôn đúng với mọi x
\(ĐKXĐ:x\ne\pm5\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow\frac{3\left(x+5\right)}{4\left(x-5\right)\left(x+5\right)}+\frac{30}{4\left(25-x^2\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15}{4\left(x-5\right)\left(x+5\right)}+\frac{-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x-15}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3}{4\left(x+5\right)}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow18\left(x+5\right)=-28\left(x+5\right)\)
\(\Rightarrow18\left(x+5\right)+28\left(x+5\right)=0\)
\(\Rightarrow46\left(x+5\right)=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)(ktm)
Vậy pt vô nghiệm