Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
ĐKXĐ: \(x\ne a;x\ne-2\)
PT\(\Leftrightarrow\frac{\left(x+a\right)\left(x-a\right)}{\left(x+2\right)\left(x-a\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-a\right)}=2\)
\(\Rightarrow\left(x+a\right)\left(x-a\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-a\right)\)
\(\Leftrightarrow x^2-a^2+x^2-4=2\left(x^2+2x-ax-2a\right)\)
\(\Leftrightarrow2x^2-a^2-4=2x^2+4x-2ax-4a\)
\(\Leftrightarrow-a^2-4=\left(4-2a\right)x-4a\)
\(\Leftrightarrow\left(2a-4\right)x=a^2-4a+4\)
\(\Leftrightarrow2\left(a-2\right)x=\left(a-2\right)^2\)
Nếu a=2 thì PT có vô số nghiệm khác 2 và -2
Nếu a khác 2 thì PY có 1 nghiệm \(x=\frac{a-2}{2}\)với ĐK \(\hept{\begin{cases}\frac{a-2}{2}\ne-2\\\frac{a-2}{2}\ne a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-2\ne-4\\a-2\ne2a\end{cases}}\)
\(\Leftrightarrow a\ne-2\)
Vậy nếu a=2 thì PT có vô số nghiệm khác \(\pm\)2.Nếu a \(\ne\pm\)2 thì PT có 1 nghiệm \(x=\frac{a-2}{2}\).Nếu a=-2 thì PT vô nghiệm.
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R
a( ax + 1) = x(a + 2) + 2
<=>a2x+a=xa+2x+2
<=>a2x-xa-2x=2-a
<=>x.(a2-a-2)=2-a
<=>x=\(\frac{2-a}{a^2-a-2}=\frac{-\left(a-2\right)}{a^2-2a+a-2}=\frac{-\left(a-2\right)}{a.\left(a-2\right)+\left(a-2\right)}=\frac{-\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=\frac{-1}{a+1}\)