K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0 

<=>  (x - 3)(4x - 1 - 5x - 2) = 0

<=>  (x - 3)(-x - 3) = 0

<=>  x  = 3 hoặc x = -3

b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0 

<=>  (x + 3)(x - 5 + 3x - 4) = 0

<=>  (x + 3)(4x - 9) = 0

<=>  x = -3 hoặc x = 9/4

c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0 

<=>  3x^2 + 17x - 6 + x^2 - 36 = 0

<=>  4x^2 + 17x - 42 = 0

<=>  4x^2 + 24x - 7x - 42 = 0

<=>  4x(x + 6) - 7(x + 6) = 0

<=>  (4x - 7)(x + 6) = 0

<=>  x = -6 hoặc x = 7/4

d) ( x + 4 ) ( 5x + 9 ) - x+ 16 = 0 

<=>  5x^2 + 29x + 36 - x^2 + 16 = 0

<=>  4x^2 + 29x + 52 = 0

<=>  4x^2 + 16x + 13x + 42 = 0

<=>  4x(x + 4) + 13(x + 4) = 0

<=>  (4x + 13)(x + 4) = 0

<=>  x = -13/4 và x = -4

8 tháng 3 2020

\(\text{a) (5x+2)(x-7)=0}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)

Vậy ...

#Thảo Vy#

8 tháng 3 2020

\(\text{b) (x^2-1)(x+3)=0}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\hept{\begin{cases}x+1=0\\x-1=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\\x=-3\end{cases}}\)

Vậy...

14 tháng 2 2015

a/  (4x-1)(x-3)-(x-3)(5x+2)=0

<=> (x-3)(4x-1-5x-2)=0

<=> (x-3)(-x-3)=0

<=> x-3=0 hoặc -x-3=0

<=> x=3 hoặc x= -3

b/   (x+6)(3x-1)+ x^2 -36 =0

<=>  (x+6)(3x-1) + (x-6)(x+6)=0

<=>  (x+6)(3x-1+x-6)=0

<=>  (x+6)(4x-7)=0

<=>  x+6=o hoặc 4x-7=0

<=>  x= -6 hoặc x= 7/4

c/   (x+3)(x+5)+(x+3)(3x-4)=0

<=>  (x+3)(x+5+3x-4)=0

<=>  (x+3)(4x+1)=0

<=>  x+3=0 hoặc 4x+1=0

<=>  x= -3 hoặc x=-1/4

 

 

8 tháng 8 2017

6ax^2 - 36ax + 544

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

21 tháng 1 2017

d, x4+6=5x2

x4-5x2+6=0

x4-2x2-3x2+6=0

x2(x2-2)-3(x2-2)=0

(x2-1)(x2-3)=0

\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=+-1\\x=+-3\end{cases}}}\)

Vay pt tren co tap nghiem S={+1;+3}

21 tháng 1 2017

a, (x-1)(x2+3x-2)-(x3-1)=0

(x-1)(x2+3x-2)-(x-1)(x2+x+1)=0

(x-1)(x2+3x-2-x2-x-1)=0

(x-1)(2x-3)=0

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

Vay phuong trinh tren co tap nghiem la : \(S=\left(0;\frac{3}{2}\right)\)

3 tháng 5 2018

Giải các phương trình và bất phương trình sau :

1.1

a) \(2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)

b) \(5x-3< 2x+9\)

\(\Leftrightarrow5x-2x< 3+9\)

\(\Leftrightarrow3x< 12\)

\(\Leftrightarrow x< 4\)

Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)

1.2

a) \(3x+2=0\)

\(\Leftrightarrow3x=-2\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)

b) \(-x+5>6-2x\)

\(\Leftrightarrow-x+2x>-5+6\)

\(\Leftrightarrow x>1\)

Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)

c) \(\dfrac{2x-5}{x+3}=4\)

ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)

\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)

\(\Rightarrow2x-5=4x+12\)

\(\Leftrightarrow2x-4x=5+12\)

\(\Leftrightarrow-2x=17\)

\(\Leftrightarrow x=\dfrac{-17}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)

d) \(\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)

1.3

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)

b) \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)

6 tháng 3 2020

\(\left(x^2-4\right)+\left(8-5.x\right).\left(x+2\right)+4.\left(x-2\right).\left(x+1\right)=0\)

\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+\left(4.x-8\right).\left(x+1\right)=0\)

\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+4.x^2+4.x-8.x-8=0\)

\(\Leftrightarrow0+4-6.x=0\)

\(\Leftrightarrow4-6.x=0\)

\(\Leftrightarrow-6.x=-4\)

\(\Rightarrow x=\frac{2}{3}\)

Vậy x = \(\frac{2}{3}\)

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

4 tháng 4 2020

a) x^4 - 5x^2 + 4 = 0

<=> (x^2 - 1)(x^2 - 4) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0

<=> x = +-1 hoặc x = +-2

b) x^4 - 10x^2 + 9 = 0

<=> (x^2 - 1)(x^2 - 9) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0

<=> x = +-1 hoặc x = +-3

c) x^3 + 6x^2 + 11x + 6 = 0

<=> (x^2 + 5x + 6)(x + 1) = 0

<=> (x + 2)(x + 3)(x + 1) = 0

<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0

<=> x = -2 hoặc x = -3 hoặc x = -1

d) x^3 + 9x^2 + 26x + 24 = 0

<=> (x^2 + 7x + 12)(x + 2) = 0

<=> (x + 3)(x + 4)(x + 2) = 0

<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0

<=> x = -3 hoặc x = -4 hoặc x = -2