K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bình phương 2 vế lên là giải được bạn nhé !

3x2 + 5x + 14 = 5(x + 1)\(\sqrt{4x-1}\)

<=> \(\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)

Phân tích ra giải tiếp nhé bạn 

18 tháng 5 2018

Nếu phân tích ra tiếp sẽ ra phương trình bậc 4, PT ấy k có nghiệm nguyên 

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2

22 tháng 3 2022

\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)

Làm nốt

22 tháng 3 2022

2/ 

\(T=8x^2-4x+\frac{1}{4x^2}+15\)

\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}-2\right)+16\)

\(=\left(2x-1\right)^2+\left(\frac{4x^2-1}{2x}\right)^2+16\ge16\)

2 tháng 7 2017

\(3x^2+15x+2\sqrt{x^2+5x+1}=2\)                  ĐK:  \(\orbr{\begin{cases}x\ge\frac{-5+\sqrt{21}}{2}\\x\le\frac{-5-\sqrt{21}}{2}\end{cases}}\)

\(\Leftrightarrow\left(3x^2+15x+3\right)+2\sqrt{x^2+5x+1}-5=0\)  (1)

Đặt  \(t=\sqrt{x^2+5x+1}\) \(\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow3t^2+2t-5=0\)

\(\Leftrightarrow t=1\)  (vì  \(t\ge0\))

Hay  \(\sqrt{x^2+5x+1}=1\)  \(\Leftrightarrow\)  \(x^2+5x+1=1\)  \(\Leftrightarrow\)  \(x^2+5x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)  (Nhận)

Vậy  S={-5;0}

2 tháng 7 2017

xin lỗi mk ko thể gp bn đc vi mk moi hc lp 7

28 tháng 1 2022

\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)

\(\Leftrightarrow5x^3+30x^2+3x+9=0\)

\(\Leftrightarrow x=-5,95...\)

\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)

\(\Leftrightarrow12x^2-47x+26=0\)

<=> (3x - 2)(4x - 13) = 0

<=> x = 2/3 hoặc x = 13/4

c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...

30 tháng 9 2019

đặt \(\sqrt{3x^2+x+2}=a\)

\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0 

=>a=2x và x=2 đồng thởi xảy ra (1)

với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x

vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2

30 tháng 1 2017

a) (x-1)x(x+1)(x+2) = 24

<=> [(x-1)(x+2)][x(x+1) = 24

<=> (x^2+x-2)(x^2+x) = 24     (1)

Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4    (*)

(1) trở thành (t-1)(t+1) = 24

<=> t^2 - 1 - 24 = 0

<=> t^2 - 25 = 0

<=> t^2 = 25

<=> t=5 hoặc t=-5

Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5

<=> (x+1/2)^2 = 25/4

Đến đây dễ r`

30 tháng 1 2017

c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0

<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0

<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0

<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0

<=> (x+1)^2.(x^2+x+1) = 0

Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0

Nên x+1=0 <=> x=-1

Vậy ...