Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
thỏ_con
Ko biết thì nói làm gì bạn
Công nhận bạn rảnh dễ sợ luôn
@@@
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)
\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)
\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)
\(\Leftrightarrow19x=-8\)
\(\Rightarrow x=-\frac{8}{19}\)
\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)
Th1 : 3x - 1 = 0
=> x = 1/3
Th2: 2 - 2x = 0
=> x = 1
a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9
<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4
<=> (8x+5)(8x+6)(8x+4) = 72
Đặt 8x+5 = y ta có phương trình tương đương :
y ( y -1 ) ( y+1) = 72
......................
b, Tương tự phần a nhé
c, x^3 + 5x^2 + 5x + 2=0
<=> x^3 + 1 + 5x^2 + 5x + 1 = 0
<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0
<=> (x+1 ) ( x^2+4x + 1) + 1 = 0
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Ta có: 5x + 3x2 = 0
<=> x(3x + 5) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)
5(x2 - 2x) = (3 + 5x)(x - 1)
<=> 5x2 - 10x = 5x2 - 2x - 3
<=> 5x2 - 10x - 5x2 + 2x = -3
<=> -8x = -3
<=> x = 3/8 Vậy S = {3/8}
(4x + 3)2 = 4(x - 1)2
<=> (4x + 3)2 - (2x - 2)2 = 0
<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0
<=> (2x + 5)(6x + 1) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\) Vậy S = {-5/3; -1/6}
a) 5x + 3.x2 = 0
<=>x . ( 5 + 3x ) = 0
<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)
Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}
b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )
<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x
<=> -10.x = 3.x - 3-5.x
<=> -10.x = -2.x - 3
<=> -8.x = -3
<=> x = \(\frac{3}{8}\)
Vậy x = \(\frac{3}{8}\)
c) ( 4x + 3 )2 = 4. ( x - 1 )2
<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )
<=> 16.x2+24.x + 9 = 4.x2 -8.x + 4
<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0
<=> 12.x2 + 32.x + 5 = 0
<=> 12.x2 + 30.x + 2.x + 5 = 0
<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0
<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0
<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)
Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}
3, đk : x =< 3/5
TH1 : \(x-2=3-5x\Leftrightarrow6x=5\Leftrightarrow x=\dfrac{5}{6}\)(ktm)
TH2 : \(x-2=5x-3\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)(tm)
4, \(\Leftrightarrow8x-14=3x+21\Leftrightarrow5x=35\Leftrightarrow x=7\)
Bài 3:
\(\Leftrightarrow x-2=3-5x\\ \Leftrightarrow x+5x=3+2\\ \Leftrightarrow6x=5\\ \Leftrightarrow x=\dfrac{5}{6}\)
Vậy \(x=\dfrac{5}{6}\)
Bài 4:
\(\Leftrightarrow8x-14=3x+3+18\)
\(\Leftrightarrow8x-3x=3+18+14\\ \Leftrightarrow5x=35\\ \Leftrightarrow x=\dfrac{35}{5}=7\)
Vậy x = 7