Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72\)(nhân hai vế với 8)
Đặt \(8x-1=y\). Khi đó, pt được viết lại:
\(\left(y+1\right)y^2\left(y-1\right)=72\)
\(\Leftrightarrow y^2\left(y^2-1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow y^4+3y^3-3y^3-9y^2+8y^2+24y-24y-72=0\)
\(\Leftrightarrow y^3\left(y+3\right)-3y^2\left(y+3\right)+8y\left(y+3\right)-24\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^3-3y^2+8y-24\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^2\left(y-3\right)+8\left(y-3\right)\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-3\right)\left(y^2+8\right)=0\)
Mà \(y^2+8\ge8>0\)
\(\Rightarrow\orbr{\begin{cases}y+3=0\\y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\y=3\end{cases}}}\)
TH1: \(y=-3\)
\(\Rightarrow8x-1=-3\)
\(\Leftrightarrow8x=-2\)
\(\Leftrightarrow x=\frac{-1}{4}\)
TH2: \(y=3\)
\(\Rightarrow8x-1=3\)
\(\Leftrightarrow8x=4\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của pt là S={\(\frac{-1}{4};\frac{1}{2}\)}
a,2x(8x-1)2(4x-1)=9(1)
<=>(8x-2)(8x-1)2.x=9
<=>8x(8x-1)2(8x-2)=8.9=72(2)
Đặt 8x-1=y ,pt (2) trở thành (y+1)y2(y-1)=72 ....... tới đây tự giải
b, tương tự ý a ,nhan 4 vào (3x+2) ,nhân 6 vào (2x+3)
c, nhân 2 vào (x+1)
a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9
<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4
<=> (8x+5)(8x+6)(8x+4) = 72
Đặt 8x+5 = y ta có phương trình tương đương :
y ( y -1 ) ( y+1) = 72
......................
b, Tương tự phần a nhé
c, x^3 + 5x^2 + 5x + 2=0
<=> x^3 + 1 + 5x^2 + 5x + 1 = 0
<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0
<=> (x+1 ) ( x^2+4x + 1) + 1 = 0
a)2x(8x-1)2 (4x-1)=9
\(\Leftrightarrow\text{ (64x}^2\text{-16x+1)(8x}^2\text{-2x)=9}\)
\(\Leftrightarrow\text{ 512x}^4\text{-256x}^3\text{+40x}^2\text{-2x=9}\)
\(\Leftrightarrow\text{ 512x}^4\text{-256x}^3\text{+40x}^2\text{-2x-9=0}\)
\(\Leftrightarrow\text{ 512x}^4\text{-128x}^3\text{-64x}^2\text{-128x}^3\text{+32x}^2\text{+16x+72x}^2\text{-18x-9=0}\)
\(\Leftrightarrow\text{ (512x}^4\text{-128x}^3\text{-64x}^2\text{)-(128x}^3\text{-32x}^2\text{-16x)+(72x}^2\text{-18x-9)=0}\)
\(\Leftrightarrow\text{ 64x}^2\text{(8x}^2\text{-2x-1)-16x(8x}^2\text{-2x-1)+9(8x}^2\text{-2x-1)=0}\)
\(\Leftrightarrow\text{ (64x}^2\text{-16x+9)(8x}^2\text{-2x-1)=0}\)
\(\Leftrightarrow\text{ (64x}^2\text{-16x+9)(8x}^2\text{-4x+2x-1)=0}\)
\(\Leftrightarrow\text{ (64x}^2\text{-16x+9)(2x-1)(4x+1)=0}\)
\(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\) (Vì 64x2 -16x+9 =0 )
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)
Ta có : \(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
=> \(\left(8x^2-2x\right)\left(64x^2-16x+1\right)=9\)
=> \(512x^4-128x^3+8x^2-128x^3+32x^2-2x-9=0\)
=> \(512x^4-256x^3+40x^2-2x-9=0\)
=> \(512x^4+128x^3-384x^3-96x^2+136x^2+34x-36x-9=0\)
=> \(128x^3\left(4x+1\right)-96x^2\left(4x+1\right)+34x\left(4x+1\right)-9\left(4x+1\right)=0\)
=> \(\left(4x+1\right)\left(128x^3-96x^2+34x-9\right)=0\)
=> \(\left(4x+1\right)\left(128x^3-64x^2-32x^2+16x+18x-9\right)=0\)
=> \(\left(4x+1\right)\left(64x^2\left(2x-1\right)-16x\left(2x-1\right)+9\left(2x-1\right)\right)=0\)
=> \(\left(4x+1\right)\left(2x-1\right)\left(64x^2-16x+9\right)=0\)
Ta thấy : \(64x^2-16x+9\)
\(=\left(64x^2-2.8.x+1\right)+8\)
\(=\left(8x-1\right)^2+8>0\)
=> \(\left(4x+1\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}4x+1=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{1}{4};\frac{1}{2}\right\}\)
a)2x(8x-1)2(4x-1)=9
\(\Leftrightarrow\) (64x2-16x+1)(8x2-2x)=9
\(\Leftrightarrow\) 512x4-256x3+40x2-2x=9
\(\Leftrightarrow\) 512x4-256x3+40x2-2x-9=0
\(\Leftrightarrow\) 512x4-128x3-64x2-128x3+32x2+16x+72x2-18x-9=0
\(\Leftrightarrow\) (512x4-128x3-64x2)-(128x3-32x2-16x)+(72x2-18x-9)=0
\(\Leftrightarrow\) 64x2(8x2-2x-1)-16x(8x2-2x-1)+9(8x2-2x-1)=0
\(\Leftrightarrow\) (64x2-16x+9)(8x2-2x-1)=0
\(\Leftrightarrow\) (64x2-16x+9)(8x2-4x+2x-1)=0
\(\Leftrightarrow\) (64x2-16x+9)(2x-1)(4x+1)=0
\(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\) (Vì 64x2-16x+9>0)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\)\(\left[2x\left(4x+1\right)\right]\left(8x-1\right)^2=9\)
\(\Rightarrow\left(64x^2-16x+1\right)\left(8x^2-2x\right)=9\) (1)
đặt \(8x^2-2x=a\Rightarrow64x^2-16x=8a\)
từ đó (1)có dạng : (8a+1)a=9
\(\Rightarrow8a^2+a-9=0\)
\(\Rightarrow8a^2-8a+9a-9=0\)
\(\Rightarrow8a\left(a-1\right)+9\left(a-1\right)=0\)
\(\Rightarrow\left(8a+9\right)\left(a-1\right)=0\)
\(\left[\begin{matrix}8a+9=0\\a-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=\frac{-9}{8}\\a=1\end{matrix}\right.\)
từ đó thay vào tìm x
Nhows k cho mình nhá
\(PT< =>8x\left(8x-1\right)^2\left(8x-2\right)=72\)
\(< =>8x\left(8x-2\right)\left(64x^2-16x+1\right)=72\)
\(< =>\left(64x^2-16x\right)\left(64x^2-16x+1\right)=72\)
Đặt \(64x^2-16x+\frac{1}{2}=t\)
\(PT< =>\left(t-\frac{1}{2}\right)\left(t+\frac{1}{2}\right)=72\)
\(< =>t^2=\frac{289}{4}\)
\(< =>\orbr{\begin{cases}t=\frac{17}{2}\\t=\frac{-17}{2}\end{cases}}\)
\(TH1:t=\frac{17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{17}{2}\)
\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{4}\end{cases}}\)
\(TH2:t=\frac{-17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{-17}{2}\)
\(< =>64x^2-16x+9=0\)
\(< =>\left(8x-1\right)^2+8=0\left(VL\right)\)
Vậy S={1/2;-1/4}