Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3x+3+x^2-x-1-2x^2+2x+1=1\)
\(\Leftrightarrow4x+2=0\Leftrightarrow x=-\dfrac{1}{2}\)
a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3
<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 = x3 + 3x2 + 3x + 1
<=> x3 + 3x2 + 12x - x3 - 3x2 - 3x = 1 + 9
<=> 9x = 10
<=> x = 10/9
vậy S = {10/9}
b) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22
<=> -5x2 + 2x - 10x + 5x2 + 11x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy S = {-7}
c) (x + 1)(2x - 3) = (2x - 1)(x + 5)
<=> 2x2 - x - 3 = 2x2 + 9x - 5
<=> 2x2 -x - 2x2 - 9x = -5 + 3
<=>-10x = -2
<=> x = 1/5 Vậy S = {1/5}
d) (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> -x + x = 9
<=> 0x = 9 (vô nghiệm)
=> pt vô nghiệm
e) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2
<=> x2 + x - 12 - 6x + 4 = x2 - 8x + 16
<=> x2 - 5x - x2 + 8x = 16 + 8
<=> 3x = 24
<=> x = 8
Vậy S = {8}
g) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x - 1)
<=> x3 + 1 - 2x = x3 - x
<=> x3 - 2x - x3 + x = -1
<=> -x = -1 <=> x = 1
Vậy S = {1}
a. 5-(x-6)=4(3-2x)
<=>5-x+6 = 12-8x
<=>-x+8x =-5-6+12
<=>7x=1
<=>x=\(\frac{1}{7}\)
Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))
c.7 -(2x+4) =-(x+4)
<=> 7-2x-4=-x-4
<=>-2x+x= -7+4-4
<=> -x = -7
<=> x=7
Vậy phương trình có nghiệm là S=(7)
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
Giải phương trình:
a) (x+2)3 - (x-2)3 = 12x(x-1) - 8
<=> (x2 + 3.x2.2 + 3.x.22 + 23) - (x2 - 3.x2.2 + 3.x.22 - 23) - [12x(x-1) - 8] = 0
<=> (x3 + 6x2 + 12x + 8) - (x3 - 6x2 + 12x - 8) - (12x2 - 12x - 8) = 0
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0
<=> 12x +32 = 0
<=> x = −3212 = −223
Vậy phương trình có nghiệm duy nhất là −223
b) (3x-1)2 - 5(2x+1)2 + (6x-3)(2x+1) = (x-1)2
<=> (9x2 - 6x + 1) - 5(4x2 + 4x + 1) + 3(2x - 1)(2x + 1) - (x2 - 2x +1) = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x -1 = 0
<=> -24x - 8 = 0
<=> x = −824 = −13
Vậy phương trình có nghiệm duy nhất là −13
bạn tự điền mấy cái dấu gạch p/s nhé
________________________________
_chúc bạn học tốt_
b/ (12x + 7)2(3x + 2)(2x + 1) = 3
=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3
- Nhân 2 vế cho 24 ta đc:
(144x2 + 168x + 49) (144x2 + 168x + 48) = 72
- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a + 9)(a - 8) = 0
=> a = -9 hoặc a = 8
- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm
- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6
Vậy x = -1/3 , x = -5/6