Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^4+x^2+6x-8=0\Leftrightarrow\left(x^4-16\right)+\left(x^2-x\right)+\left(2x-2\right)+\left(5x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)+x\left(x-1\right)+2\left(x-1\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x-2\right)\left(x^2+4\right)+x-1+5\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^3-2x^2+5x-4\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(4x-4\right)+\left(x-x^2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+4\left(x-1\right)-x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+4-x\right)=0\)
Vậy x = -2; x =1
b/ đặt x2 + x + 1 = t có:
t (t + 1) = 12
<=> t2 + t - 12 = 0
<=> (t2 - 16) + (t + 4) = 0
<=> (t - 4) (t + 4) + (t + 4) = 0
<=> (t + 4) (t - 4 + 1) = 0
<=> (t + 4) (t - 3) = 0
=> t = -4; t = 3
thay t = x2 + x + 1 đc:
x2 + x + 1 = -4 ; x2 + x + 1 = 3
<=> x2 + x + 5 = 0 <=> x2 + x - 2 = 0
<=> x (loại) <=> (x2 - 1) + (x - 1) = 0
<=> (x - 1) (x + 2) = 0
<=> x = 1; x = -2
c/ đặt x2 + x - 2 = a có:
a (a - 1) = 12
<=> a2 - a - 12 = 0
<=> (a2 - 16) - (a - 4) = 0
làm tương tự câu b
..........
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
1.
Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào pt:
\(\Rightarrow a^2+10a+24=0\)
\(\Leftrightarrow a^2+6a+4a+24=0\)
\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)
\(\Rightarrow x=3,x=2,x=4,x=1\)
T I C K mình sẽ giải típ cho cảm ơn
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
2/ (x2 + x + 1) (x2+ x + 2) = 12
đặt x2 + x = t
thay vào đc:
(t + 1) (t + 2) = 12
<=> t2 + 3t + 2 = 12
<=> t2 + 3t - 10 = 0
<=> t2 - 2t + 5t - 10 = 0
<=> t (t - 2) + 5 (t - 2) = 0
<=> (t + 5) (t - 2) = 0
=> \(\hept{\begin{cases}t=-5\\t=2\end{cases}}\)
thay t đc:
*) x2 + x = -5 => x loại
*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2)
=> x = 1 hoặc x = - 2
S = {-2 ; 1}
3/ (x2 - 6x + 4)2 - 15(x2 - 6x + 10) = 1
đặt x2 - 6x + 4 = t
có: t2 - 15(t + 6) = 1
<=> t2 - 15t - 91 = 0
....
....
số xấu, xem lại đề ~0~
câu 2, a=x2 +x+1 . PHƯƠNG TRÌNH TRỞ THÀNH a x (a +1)=12. giải binh thương
câu 3, tương tự a= x2 - 6x + 4 .PHƯƠNG TRÌNH TRỞ THÀNH a2 - 15x(a+6)=1. giải bình thương
Mình chỉ biết bài b) thôi, mà cũng ko biết có đúng ko
x4+x3+x+1=0
<=> (x4+x3)+(x+1)=0
<=> x3(x+1)+(x+1)
<=> (x+1)(x3+1)=0
=>x+1=0
x3+1=0
=> x= -1
x3= -1
=> x= -1
Câu 1:
\((x+2)(x^2-3x+5)=(x+2)x^2\)
\(\Leftrightarrow (x+2)(x^2-3x+5)-(x+2)x^2=0\)
\(\Leftrightarrow (x+2)(x^2-3x+5-x^2)=0\)
\(\Leftrightarrow (x+2)(-3x+5)=0\Rightarrow \left[\begin{matrix} x+2=0\\ -3x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{5}{3}\end{matrix}\right.\)
Câu 2:
\(2x^2-x=3-6x\)
\(\Leftrightarrow x(2x-1)=3(1-2x)=-3(2x-1)\)
\(\Leftrightarrow x(2x-1)+3(2x-1)=0\)
\(\Leftrightarrow (2x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-3\end{matrix}\right.\)
Câu 3:
\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow (x^3+2x^2)+(x+2)=0\Leftrightarrow x^2(x+2)+(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2+1)=0\Rightarrow \left[\begin{matrix} x+2=0\\ x^2+1=0(\text{vô lý})\end{matrix}\right.\Rightarrow x=-2\)
Câu 5:
\(3x^2+7x-20=0\)
\(\Leftrightarrow 3x^2+12x-5x-20=0\)
\(\Leftrightarrow 3x(x+4)-5(x+4)=0\)
\(\Leftrightarrow (3x-5)(x+4)=0 \Rightarrow \left[\begin{matrix} x=\frac{5}{3}\\ x=-4\end{matrix}\right.\)
Bài 1:
1,\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right).x^2\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right).x^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{5}{3};-2\right\}\)
2,\(2x^2-x=3-6x\)
\(\Leftrightarrow2x^2-x-3+6x=0\)
\(\Leftrightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{2};-3\right\}\)
3,\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;-2\right\}\)
4.\(x^3+2x^2-x-2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-2\right\}\)
Nản quá không làm nữa đâu.Sorry
1: \(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
=>(x+2)(-3x+5)=0
=>x=-2 hoặc x=5/3
2: \(\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
=>(x+3)(2x-1)=0
=>x=1/2 hoặc x=-3
3: \(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
=>(x+2)(x+1)(x-1)=0
hay \(x\in\left\{-2;-1;1\right\}\)
5: \(3x^2+7x-20=0\)
\(\Leftrightarrow3x^2+12x-5x-20=0\)
=>(x+4)(3x-5)=0
=>x=5/3 hoặc x=-4
ai giúp tôi với