\({ \sqrt{4x+5}}\) + 2(x+5)\({ \s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

đang vội nên mk làm tắt nha . đk x>=-5/4

\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)

\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)

de thấy bt trong ngoặc dương suy ra x=1 là no

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)

\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)

\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:

\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)

\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)

\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)

\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)

\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)

\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:

\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)

\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)

\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)

\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

5 tháng 9 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}\)

\(\le\frac{x^2+x-5+1}{2}+\frac{-x^2+x+3+1}{2}\)

\(=\frac{x^2+x-4}{2}+\frac{-x^2+x+4}{2}=x\)

\(\Rightarrow x\le x^2-3x+2\Leftrightarrow-\left(x-2\right)^2+2\le0\)

Khi \(x=2\pm\sqrt{2}\)

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)