Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)
ĐKXĐ : \(x\inℝ\)
\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)
\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)
\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)
\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất x = 0
4) Ta có pt \(\Leftrightarrow\dfrac{7x+1+x^2-8x-1}{\sqrt[3]{\left(7x+1\right)^2}-\sqrt[3]{\left(7x+1\right)\left(x^2-8x-1\right)}+\sqrt[3]{\left(x^2-8x+1\right)^2}}+\dfrac{x^2-x+8-8}{\sqrt[3]{\left(x^2-x+8\right)^2}+2\sqrt[3]{x^2-x+8}+4}=0\)
\(\Leftrightarrow\dfrac{x^2-x}{...}+\dfrac{x^2-x}{...}=0\Leftrightarrow\left(x^2-x\right)\left(...\right)=0\)
Mà ...>0 => \(x^2-x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
2) Ta có pt \(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x-1}=\sqrt{x}\Leftrightarrow x\left(x+1\right)=\left(\sqrt{x}+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow x^2+x=2x-1+2\sqrt{x\left(x-1\right)}\Leftrightarrow x^2-x-1=2\left(\sqrt{x^2-x}-1\right)\)
\(\Leftrightarrow x^2-x-1=2.\dfrac{x^2-x-1}{\sqrt{x^2-x}+1}\Leftrightarrow\left(x^2-x-1\right)\left(1-\dfrac{2}{\sqrt{x^2-x}+1}\right)=0\)...đến đấy chắc tự làm tiếp được
ĐK: x\(\ge0\)
\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+2}}+\dfrac{1}{\sqrt{x+2}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x}}=1\Leftrightarrow\dfrac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+\dfrac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}=1\Leftrightarrow\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=\sqrt{x+3}-\sqrt{x}=1\Leftrightarrow\sqrt{x+3}=\sqrt{x}+1\Leftrightarrow x+3=x+2\sqrt{x}+1\Leftrightarrow2=2\sqrt{x}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)Vậy S={1}
a)ĐK \(x\ge2\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\dfrac{\sqrt{x-2}}{\sqrt{81}}=4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}.3\sqrt{x-2}+6\dfrac{\sqrt{x-2}}{9}=4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=4\)
\(\Leftrightarrow-\sqrt{x-2}=4\left(vl\right)\)
b) \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{x-1}\) (ĐK \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=\sqrt{x-1}\\1-\sqrt{x-1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1=0\left(vl\right)\\2\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{5}{4}\)
2. ĐK: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)
pt trên được viết lại thành
\(2a^2+b^2-3ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)
Đến đây dễ rồi nhé ^^
a)
ĐKXĐ \(\left(x\ge1\right)\)
\(\Leftrightarrow2x-2\sqrt{x^2-2x+1}=\dfrac{x^2+6x+9}{4}\)
\(8x-8\left(x-1\right)=x^2+6x+9\)
\(\Leftrightarrow x^2+6x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3-\sqrt{10}\left(l\right)\\x=\sqrt{10}-3\left(tm\right)\end{matrix}\right.\)
ĐKXĐ: x>=1
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{1}{2}\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\dfrac{1}{2}\left(x+3\right)\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{1}{2}\left(x+3\right)\)
=>\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{1}{2}\left(x+3\right)\)
TH1: \(x>=2\)
PT sẽ tương đương với \(\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{1}{2}\left(x+3\right)\)
=>\(2\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)
=>\(4\sqrt{x-1}=x+3\)
=>\(\sqrt{16x-16}=x+3\)
=>x>=-3 và (x+3)^2=16x-16
=>x>=-3 và x^2+6x+9-16x+16=0
=>x>=-3 và x^2-7x+25=0
=>Loại
TH2: 1<=x<2
PT sẽ là \(\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)
=>1/2(x+3)=2
=>x+3=4
=>x=1(nhận)