Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+x)^2+4(x^2+x)=12
<=>x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0
<=>x^4 + 2x^3 + 5x^2 + 10x - 6x - 12 = 0
<=>x^3(x+2) + 5x(x+2)-6(x+2) = 0
<=>(x+2)(x^3 + 5x - 6) = 0
<=>(x+2)(x^3 - x+ 6x - 6) =0
<=>(x+2)[(x-1)(x^2+x+1) + 6(x-1)] = 0
<=>(x+2)(x-1)(x^2+x+7) = 0
Ta có: x^2+x+7 >=0
<=>
[ x+2 = 0 <=> x = -2
[x - 1 = 0 <=> x = 1
Vậy pt có 2 ng x=1, x=-2
Đặt ẩn phụ là xong á?
Đặt \(x^2+x=t\).Phương trình trở thành:
\(t^2+4t-12=0\Leftrightarrow t^2-2t+6t-12=0\)
\(\Leftrightarrow t\left(t-2\right)+6\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x+6=0\left(2\right)\end{cases}}\)
Giải (1) được hai nghiệm: x = 1; x = -2
Giải (2) ta có: \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\forall x\)
Nên (2) vô nghiệm.
Vậy phương trình có 2 nghiệm x = 1; x = -2
a, <=>(X4 -X3)+(3X3 -3X2)+(8X2-8X)+(12X-12)=0
<=>X3(X-1)+3X2(X-1)+8X(X-1)+12(X-1)=0
<=>(X3+3X2+8X+12)(X-1)=0
<=>[(X3+2X2)+(X2+2X)+(6X+12)](X-1)=0
<=>[(X+2)+X(X+2)+6(X+2)](X-1)=0
<=>(X2+X+6)(X+2)(X-1)=0
Vì X2+X+6=X2+2.X++=(X+)2+ >0
=>(X+2)(X-1)=0
<=>X+2=0 hoặc X-1=0
*X+2=0 <=>X=-2
*X-1=0 <=>X=1
Vậy....................
b, Bạn nên xem lại đầu bài
a) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Vì \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
a, Ta có :
x4+8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
\(\Rightarrow x^2-1=0\Rightarrow x=1\)
\(\Rightarrow x^2+9=0\Rightarrow x=-3\)
b, k bt lm
a/ \(x^4+x^2+6x-8=0\Leftrightarrow\left(x^4-16\right)+\left(x^2-x\right)+\left(2x-2\right)+\left(5x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)+x\left(x-1\right)+2\left(x-1\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x-2\right)\left(x^2+4\right)+x-1+5\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^3-2x^2+5x-4\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(4x-4\right)+\left(x-x^2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+4\left(x-1\right)-x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+4-x\right)=0\)
Vậy x = -2; x =1
b/ đặt x2 + x + 1 = t có:
t (t + 1) = 12
<=> t2 + t - 12 = 0
<=> (t2 - 16) + (t + 4) = 0
<=> (t - 4) (t + 4) + (t + 4) = 0
<=> (t + 4) (t - 4 + 1) = 0
<=> (t + 4) (t - 3) = 0
=> t = -4; t = 3
thay t = x2 + x + 1 đc:
x2 + x + 1 = -4 ; x2 + x + 1 = 3
<=> x2 + x + 5 = 0 <=> x2 + x - 2 = 0
<=> x (loại) <=> (x2 - 1) + (x - 1) = 0
<=> (x - 1) (x + 2) = 0
<=> x = 1; x = -2
c/ đặt x2 + x - 2 = a có:
a (a - 1) = 12
<=> a2 - a - 12 = 0
<=> (a2 - 16) - (a - 4) = 0
làm tương tự câu b
..........
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
1) (x^2 + x)^2 - (x^2 + x) - 2 = 0
<=> x^2(x + 1)^2 - x^2 - x - 2 = 0
<=> x^4 + 2x^3 + x^2 - x^2 - x - 2 = 0
<=> x^4 + 2x^3 - x - 2 = 0
<=> x^3(x + 2) - (x + 2) = 0
<=> (x^3 - 1)(x + 2) = 0
<=> x^3 - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2