K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

x 410x3+26x210x+1=0

⇔x2(x2-10x +26 -\(\dfrac{10}{x}+\dfrac{1}{x^2}\))=0

⇔x2-10x+26-\(\dfrac{10}{x}+\dfrac{1}{x^2}=0\)

\(\left(-10x-\dfrac{10}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)

\(-10\left(x+\dfrac{1}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)

đặt \(t=\left(x+\dfrac{1}{x}\right)\) thì \(\left(x^2+\dfrac{1}{x^2}\right)=t-2\)

ta có

-10t +t2-2+26=0

=>t2-10t+24=0

=>t2-4t-6t+24=0

=>(t2-4t)-(6t-24)=0

=>t(t-4)-6(t-4)=0

=>(t-4)(t-6)=0

=>t=4 và t=6

* với t=4 thì

\(x+\dfrac{1}{x}=4\Rightarrow x^2-4x+1=0\)(vô nghiệm)

* với t=6 thì

\(x+\dfrac{1}{x}=6\Rightarrow x^2-6x+1=0\) (vô no)

vậy S=∅

9 tháng 1 2018

x 410x3+26x210x+1 =0 à

mk là theo

x 410x3+26x210x+1=0 nha

8 tháng 2 2019

x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0

⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0

⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0

⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0

⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0

⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0

⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2

8 tháng 2 2019

Thử phân tích VT thành: \(\left(x^2+6x+1\right)\left(x^2+4x+1\right)=0\) xem sao?

NV
24 tháng 9 2019

\(x^4+10x^3+25x^2+x^2+1=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2+x^2+1=0\)

Do \(\left(x^2+5x\right)^2+x^2+1>0\) \(\forall x\)

\(\Rightarrow\) Phương trình vô nghiệm

4 tháng 7 2018

          \(x^4-10x^3+26x^2-10x+1=0\)

\(\Leftrightarrow\)\(\left(x^4-4x^3+x^2\right)-\left(6x^3-24x+6x\right)+\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\)\(x^2\left(x^2-4x+1\right)-6x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-6x+1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6x+1=0\\x^2-4x+1=0\end{cases}}\)

Nếu   \(x^2-6x+1=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3-\sqrt{8}\\x=\sqrt{8}+3\end{cases}}\)

Nếu  \(x^2-4x+1=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)

Vậy....

26 tháng 4 2017

\(x^4+10x^3+26x^2+10x+1=0\)

\(\Leftrightarrow x^4+6x^3+x^2+4x^3+24x^2+4x+x^2+6x+1=0\)

\(\Leftrightarrow x^2\left(x^2+6x+1\right)+4x\left(x^2+6x+1\right)+\left(x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4x+4-3\right)\left(x^3+6x+9-8\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^2-3\right]\left[\left(x+3\right)^2-8\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2-3=0\\\left(x+3\right)^2-8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2=3\\\left(x+3\right)^2=8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-4\pm\sqrt{12}}{2}\\x=\dfrac{-6\pm\sqrt{32}}{2}\end{matrix}\right.\)

24 tháng 9 2019

bạn ơi, có mẹo gì không ??

6 tháng 4 2017

\(\left(x^2+5x+4\right)\left(x^2-4x+4\right)=10x^2\)

x= 0 không phải nghiệm

chia hai vế cho x^4

\(\left(x+\dfrac{4}{x}+5\right)\left(x+\dfrac{4}{x}-4\right)=10\)

Đặt x+4/x =t

\(t^2+t-20=10\)\(\Rightarrow\left[{}\begin{matrix}t=5\\t=-6\end{matrix}\right.\)

Thay lại tìm x tự làm

6 tháng 4 2017

bn giải đúng r nhưng ở kia fải là chia 2 vế cho x^2

Nói chung cảm ơn!!!